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1 Introduction

MARS is a powerful and robust object-oriented solver for simulating the mechanical
response of structural systems subjected to short duration events. It employs an explicit
time integration scheme for solving the equation of motion of large systems. It implements
all the capabilities and versatility of general finite element codes. In addition, MARS
features some unique techniques, such as the Lattice Discrete Particle Model (LDPM) and
adaptive remeshing algorithms for shell and solid meshes, which facilitate the solution of
problems involving structural break-ups, fragmentation and post-failure response under
extreme loading conditions.

MARS includes standard finite element and discrete element features such as:

• QPH quadrilateral shell elements with physical hourglass stabilization,

• DKT triangular shell elements,

• Beam elements with various built-in cross sections

• 8-Node Flanagan-Belytschko hexahedral elements with hourglass stabilization

• Hyper-elastic solid elements,

• Various constraint formulations, including concrete-rebar interaction, interaction,

• Automatic contact algorithm for node-face, edge-edge, node-edge, node-node con-
tact detection,

• Macro-particles for simulating discrete elements with complex shapes.

Additionally, MARS has an object-oriented architecture, which makes it possible to add
new capabilities in an efficient and systematic fashion. All entities in MARS are organized
in a hierarchical framework. Classes of simple entities, such as edges and faces, are used
to derive more complex entities, such as beams and shells. Since February 2011, MARS
incorporates an interface which makes it possible for users to develop custom objects,
element formulations, and lists. A user can derive new classes from existing ones and
then modify them by inserting new features. For example, a Cosserat 10 node tetrahedral
element was recently developed by a student starting from the already available 10-node
tetrahedral element. The interface is very flexible and allows to incorporate any number
of new objects (material models, special load histories, etc.) and lists (lists typically
implement element formulations, interaction mechanisms, etc.).
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MARS has been successfully adopted for the simulation of a wide variety of problems,
which include:

• Modeling of cracking and failure of cement-based materials materials

• Response of reinforced concrete structures to blast loads and fragment impacts

• Cable dynamics problems

• Fragmentation of ordinance casings

• Laceration of plates and shells

1.1 The Lattice Discrete Particle Model (LDPM)

The Lattice Discrete Particle Model (LDPM), is a discrete meso-mechanical model for
concrete, which was recently developed by Dr. Cusatis and co-workers at Rensselaer in
collaboration with Dr. Pelessone at ES3. LDPM simulates the mesostructure of concrete
by a three-dimensional assemblage of discrete particles whose position within the volume
of interest is generated randomly according to the given aggregate size distribution. A
whole section of this report is dedicated to LDPM.

LDPM has been extensively calibrated and validated in the last few years and it has
shown superior capabilities in reproducing and predicting qualitative and quantitative
concrete behavior under a wide range of loading conditions.

1.2 Fragmentation of Weapon Casings

The MARS fragmentation algorithm for solids inserts discrete cracks within a hexahedral
mesh treating failure at the structural level rather than in the material constitutive
equations. The initial mesh is subdivided into clusters of elements. Cracks may form
between clusters when a local measure of damage exceeds a local allowable. Cracks can
propagate and/or coalesce forming fragments of various shapes and sizes. The parameters
of the algorithm have been calibrated for specific weapons so that generated fragment
distributions match arena test data. data.

1.3 Nano-Scale Modeling of C-S-H

The discrete element capabilities of MARS were used to simulate the behavior of Calcium-
Silicate-Hydrate (C-S-H) through nano-scale models of C-S-H specimens subjected to
nano-indentation testing. The simulation results from these models are providing new
knowledge in the nanomechanical behavior of C-S-H and are helping in formulating con-
stitutive laws for higher scale simulations. simulations.
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1.4 Parallelization

The MARS software can solve extremely large analytical models, which require extensive
use of computer resources. The large demand on computer memory and CPU time
can only be satisfied by using distributed-memory massively parallel computer systems,
like the ones available at the ERDC supercomputer center. Over the last two years
(2008-2010), MARS has been modified to implement domain decomposition and use the
Message Passing Interface (MPI) protocol. This is an on-going area of research, which
puts MARS at the leading edge of simulation software.

1.5 Vehicle Response to Blast

Conversion filters in MARS translate models developed for other codes. In the exam-
ple below, the model of a Ford Taurus, developed at GWU for crash simulations, was
employed to simulate the effect of surface charges applied on the vehicle.

1.6 Laceration of Plates and Shells

The MARS laceration algorithm is essentially a two-dimensional version of the solid
fragmentation algorithm presented earlier. Cracks can develop between clusters of shell
elements depending on specified local failure criteria. Cracks can propagate or coalesce
to form tears. All material is fully accounted for as all mass is maintained and balanced.

1.7 Steel Plates Structures

Complex steel plate structures commonly found in civil and mechanical construction can
be modeled in great detail with MARS. Contact conditions between all entities in the
model ensure that plates do not penetrate each other. Rivet, bolt, or weld elements are
used to hold plates and braces together.

2 Available Documentation

The MARS documentation consists of four different forms of documentation:

• An online manual hosted at http://www.es3inc.com/mechanics/MARS/Online/MarsManual.htm.
This contains several examples with figures. However, since it is hosted at a re-
mote web-site, that makes it difficult to keep it syncronized with the latest version
of MARS. As such, its use is more for general reference but not for specific instruc-
tions on how to use input commands.

• A blog hosted at http://es3-mars.blogspot.com/ . This is useful for providing a
chronology of when new features are inserted in MARS.

• A built-in manual printed to an ASCII text file directly from the Mars executable.
The information in the manual is consistent with the features built into the code.
Indeed, it is relatively simple to update the documentation at the same time a new
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feature is added or and existing feature is modified, since documentation coexists
in the same source files where the algorithms are implemented. implemented.

MARS is a fast developing solver, with new features being added on a regular basis and
occasional reorganization of existing material. As such, the built-in ASCII manual was
playing a critical role in providing updated documentation consistent with the version of
the program from which it was printed. However, the format of the documentation was
not practical, since it did not provide an updatable table of contents. Furthermore, it
could only be explored using a text editor like vi or Notepad, which provide the basic
‘find’ tools for searching specific words inside a file. In February 2011, we realized that
we could restructure the built-in manual and generate better quality documentation.
Essentially, using the polymorphic properties of Object Oriented C-classes, we created
three classes that would process the same information and generate three different types
of documents:

• The ordinary ASCII text manual already available, obtained by executing Mars
with the -H option ( mars -H ). Note that the name of the Mars executable may
vary on different computer systems. Check section on computing platforms.

• An ASCII tex file which can be processed using LaTex for generating a pdf file
with a hyperlinked table of contents. The LaTex file is generated using the -Dl

option where l is the lower case letter l. Until October 29, 1012, the date in the
title page was left blank and LaTex would use the current date when printing the
document. This resulted in the document date being different from the date of
the MARS version that generated it. Since October 29, 2012, the date of the title
page is set to compilation date and time of the MARS executable that generated
the document. The same date and time appears in the output of any execution
performed using the same MARS executable.

• A set of html files which can be accessed using any internet browser. Table of
contents and hyperlinks are also available. These html files are generated in the
current folder using the command mars -Dh. The files can be accessed with any
web browser.

3 Code Architecture and Input Format

The MARS input decks consists of a sequence of blocks, called sections. Each section
specifies the input for an entity, (e.g. material, load curve, etc.) or a list (finite elements
of a component, external faces of a component, contact conditions, etc.). A special
block referenced as ControlParameters includes run control commands and miscellanea
information. The order in which these blocks of information appear in the MARS input
deck provides some flexibility. The ControlParameter section must always be placed at
the beginning of the input because it contains units selections. The definition of new
entities must be done before they are referenced in other parts of the input file. In this
manual, we use the term ‘entity’ for individual objects, such as material models, reference
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systems, load curves, etc., and lists of objects, such as finite element lists, contact lists,
constraint lists, etc.

Each entity is given a descriptive short name which is used as identifier in the rest
of the input file and during post-processing. Similar entities must use unique names.
However, the program does not preclude using the same name for dissimilar entities. For
example, the list of external faces of a list of solid elements (solid component)can be
given the same name as the name of the solid list. This is because a face list and a solid
list are dissimilar.

A typical input file looks like this:

First line is always a title line

ControlParameters {

. . .

}

Material Steel Elastic {

. . .

}

NodeList PartNodes {

. . .

}

// Finite element definition

HexSolidList PartElements FBSingleIP {

Material Steel

Nodelist PartNodes

. . .

}

// Applied loads

LoadCurve NodalLoad {

. . .

}

NodalLoadList Loads {

Nodelist PartNodes

LoadCurve NodalLoad

. . .

}

// Post-processing

TimeHistoryList History {

. . .

}

PlotList Plot {

. . .

}

EOF
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3.1 Major Syntax Rules

The current MARS format adopts a syntax style which resembles the C++/Java styles
with long descriptive keywords. Comments can be entered using the // characters at
any place in a line (similar to the Fortran exclamation mark). Entire sections can be
commented out using the ‘/*’ sequence at the beginning and the ‘*/’ sequence at the
end. The C++ based syntax style makes it possible to take advantage of the vim (vi
modified editor) syntax checker available on most Unix-based systems, including Linux.
The vim syntax checkers paints words in a text file with different colors to differentiate
number, comments, keywords, etc. The MARS syntax checker file is based on the C++
file with some modifications. modifications.

Each block of data is limited by curly brackets, as shown in the previous example.
Within each block, there may be sub-blocks of data which are also contained in curly
brakets. For example:

HexSolidList SolidPart FBSingleIP {

NodeList Nodes

EditNodeList {

Move 2. in 0. in 0. in

}

}

The commands inside these blocks are intended to be indented, with the number of spaces
proportional to the level of indentation. Although MARS does not enforce indentation,
it is good practise to consistently indent an input file; for example, indent by two spaces
for each level of indentation. Indentation makes the input more readable.

3.2 The Solver Loop

The solver loop performs a sequence of tasks.
A summerized version of the solver loop is listed below. This is specially useful for

those who intend to write user-defined objects and lists

while (time < terminationTime) {

// update MPI domains (if necessary)

mpiDomains.update();

// reset nodal forces and moments to zero

for (jL = 0; jL < numLists; jL++)

list[jL]->clearNodalForces();

// compute nodal internal forces - apply external forces

for (jL = 0; jL < numLists; jL++)

list[jL]->calcFrc();

// write time history output (if necessary)

for (jL = 0; jL < numLists; jL++)

list[jL]->writeTimHistRecord();

// reduce forces for master-slave formulations
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// (node: loop uses inverse list order)

for (jL = (numList-1); jL > -1; jL--)

list[jL]->reduceFrc();

// apply constraints

for (jL = 0; jL < numLists; jL++)

list[jL]->applyConstraints();

// write 3-D plot file records (if necessary)

for (jL = 0; jL < numLists; jL++)

list[jL]->writePlotFile();

// perform tasks from the action list

for (j = 0; j < numActions; j++)

action[j]->exec();

// integrate equations of motion

for (jL = 0; jL < numLists; jL++)

list[jL]->integrateEOM();

// apply kinematic conditions for master-slave formulations

for (jL = 0; jL < numLists; jL++)

list[jL]->applyKin();

// update time parameters

time += dt1;

numSteps++;

// go interactive if requested

checkSignal();

}

4 Control Parameters

The ControlParameters section follows the title line and is used for defining parameters
that control the simulation or global parameters. The first command must always be the
selection of units. A detail description of units is give in a separate subsection.

ControlParameters {

// Unit specification should be the first input line

Units English // more on this below

TerminationTime 1. ms

CurrentTime 0.1 ms

MaximumTimeStep 0.001 ms

RealTimeMap ‘curveName’

TimeStepScalingFactor 0.8 // default 0.9

FragmentationTimeInterval 0.005 ms

/ time or step cotrolled actions

Monitor Frequency 10 // print progress line every 10 steps

GlobalUpdateTimeInterval 0.1 ms

// more on this below
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PlottingDefaults { ... } // see below

ContactDefaults { ... } // see below

DynamicRelaxationCurve DynRelax

NoDynamicRelaxation // stop dyn relax on restart

}

4.1 Unit Systems

The unit system to be employed in a simulation is specified using the command Units

followed by one of the unit system label: SI / CGS / English / Nano / Custom.

1. SI: international, m, Kg, second

2. CGS: cm, gram, second

3. English: in, pound, second

4. Nano: nm, nnKg, ns

The unit system can be specified once, typically at the top of the ControlParameters

section. All input quantities are converted to the selected unit system. For this reason,
all quantities must be entered with their dimensional units. For example, if SI units are
chosen and the user enters a time variable of 0.1 ms, this variable will be automatically
converted to 0.0001 (s). This can be very useful for material properties; for example, the
density of a material can be found in g/cm3 and it would be tricky for most analysts
to convert it to the correct dimensions in English units. A list of available dimensional
units is given in the next subsection.

The Custom option makes it possible to choose specific dimensions for time, length,
and mass. The syntax for this command is show below.

Units Custom { Time ms Length mm Mass g }

MARS defines a set of consistent units for the major quantities of the calculation. The
label of the units are constructed using the label of the base quantities. For example,
the force quantity in the CGS unit system uses dyn units. If we specify the CGS system
using the custom command

Units Custom { Time s Length cm Mass g }

then for units for force is g-cm/s2 which is equal to 1 dyn.
The complete set of units for the ms-mm-g basic units is given below

Quantity Calculation Units Output Units

Time............: ms (1000) ms (1)

Length..........: mm (1000) mm (1)

Area............: mm2 (1e+06) mm2 (1)

Volume..........: mm3 (1e+09) mm3 (1)
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Mass............: g (1000) g (1)

Density.........: g/mm3 (1e-06) g/mm3 (1)

Velocity........: mm/ms (1) mm/ms (1)

Force...........: g-mm/ms2 (1) g-mm/ms2 (1)

Pressure........: g/(mm-ms2) (1e-06) g/(mm-ms2) (1)

Stress..........: g/(mm-ms2) (1e-06) g/(mm-ms2) (1)

Energy..........: g-mm2/ms2 (1000) g-mm2/ms2 (1)

Stiffness.......: g/ms2 (0.001) g/ms2 (1)

Rate............: 1/ms (0.001) 1/ms (1)

Angle...........: deg (57.2958 deg (1)

Momentum........: g-mm/ms (1000) g-mm/ms (1)

RotationRate....: rad/ms (0.001) rad/ms (1)

Moment..........: g-mm2/ms2 (1000) g-mm2/ms2 (1)

Acceleration....: mm/ms2 (0.001) mm/ms2 (1)

EnergyDensity...: g/mm-ms2 (1e-06) g/mm-ms2 (1)

Power...........: g-mm2/ms3 (1) g-mm2/ms3 (1)

PowerDensity....: g/mm-ms3 (1e-09) g/mm-ms3 (1)

Temperature.....: degK (1) degK (1)

TemperatureRate.: degK/ms (0.001) degK/ms (1)

TemperatureInvrs: 1/degK (1) 1/degK (1)

Length4thPower..: mm4 (1e+12) mm4 (1)

MomentOfInertia.: g-mm2 (1e+09) g-mm2 (1)

4.1.1 Dimensional Units

Below is a list of implemented dimensional units and physical quantitities which are
typically used for specifying input parameters of MARS structural models. This list
is often updated with new quantitities and units depending on what new features are
inserted in MARS. If the wrong units are used for an input parameter, MARS errors off
and prints the available units from the list below.

The conventions described in “The Unified Code for Units of Measure” are employed.
For SI and CGS systems, kilo (x 1,000) is denoted with the lower letter ‘k’ as in kg or
km, Mega (x 1,000,000) with ‘M’, giga (x 1.e9) with ‘G’, milli (x 0.001) with ‘m’, micro
(x 1.e-6) with ‘u’, pico (x 1.-9) with ‘p’.

Quantity: Nondimensional

Reference unit: unit (no label necessary)
%:(0.01)

Quantity: Time

Reference unit: s
ms:(0.001) - micros:(1e-06) - s:(1e-06) - us:(1e-06) - ns:(1e-09) - mcs:(1e-06) - min:(60)

- hours:(3600) - days:(86400)
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Quantity: Length

Reference unit: m
cm:(0.01) - mm:(0.001) - km:(1000) - in:(0.0254) - ft:(0.3048) - Km:(1000) - nm:(1e-09)

- mcm:(1e-06) - um:(1e-06)

Quantity: Area

Reference unit: m2
cm2:(0.0001) - mm2:(1e-06) - km2:(1e+06) - in2:(0.00064516) - ft2:(0.092903) - Km2:(1e+06)

- nm2:(1e-18)

Quantity: Volume

Reference unit: m3
cm3:(1e-06) - mm3:(1e-09) - km3:(1e+09) - in3:(1.63871e-05) - ft3:(0.0283168) - km3:(1e+09)

- nm3:(1e-27) - Km3:(1e+09)

Quantity: Mass

Reference unit: kg
g:(0.001) - lb:(0.453592) - lb.s2/in:(175.127) - lb-s2/in:(175.127) - Kg:(1) - ng:(1e-12)

- nnKg:(1e-18) - mcg:(1e-09) - mg:(1e-06) - ug:(1e-09)

Quantity: Density

Reference unit: kg/m3
g/cm3:(1000) - lb/in3:(27679.9) - lb.s2/in4:(1.06869e+07) - lb-s2/in4:(1.06869e+07) -

lb/ft3:(16.0185) - Kg/m3:(1) - nnkg/nm3:(1e+09) - kg/mm3:(1e+09) - nnKg/nm3:(1e+09)
- Kg/mm3:(1e+09)

Quantity: Velocity

Reference unit: m/s
cm/s:(0.01) - mm/s:(0.001) - Km/s:(1000) - in/s:(0.0254) - ft/s:(0.3048) - km/s:(1000)

- nm/ns:(1) - Km/hr:(0.277778) - mph:(0.44704) - Knots:(0.514444)

Quantity: Force

Reference unit: N
dyn:(1e-05) - lb:(4.44822) - lbf:(4.44822) - kip:(4448.22) - nN:(1e-09) - nnN:(1e-18) -

kN:(1000) - MN:(1e+06) - mN:(0.001)

Quantity: Pressure

Reference unit: Pa
psi:(6894.76) - ksi:(6.89476e+06) - lb-in-s:(6894.76) - MPa:(1e+06) - GPa:(1e+09) -

dyn/cm2:(0.1) - nPa:(1e-09) - N/mm2:(1e+06) - kPa:(1000)
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Quantity: Stress

Reference unit: Pa
psi:(6894.76) - ksi:(6.89476e+06) - lb-in-s:(6894.76) - MPa:(1e+06) - GPa:(1e+09) -

dyn/cm2:(0.1) - nPa:(1e-09)

Quantity: Energy

Reference unit: J
erg:(1e-07) - ft-lbf:(1.356) - in-lbf:(0.113) - nJ:(1e-09) - nnJ:(1e-18) - kJ:(1000) -

MJ:(1e+06) - GJ:(1e+09)

Quantity: Stiffness

Reference unit: N/m
J/m2:(1) - dyn/cm:(0.001) - erg/cm2:(0.001) - lbf/in:(175.127) - nN/nm:(1)

Quantity: Rate

Reference unit: 1/s
1/ms:(1000) - 1/ns:(1e+09) - Hz:(1)

Quantity: Angle

Reference unit: rad
deg:(0.0174533) - pi:(3.14159)

Quantity: Momentum

Reference unit: kg-m/s
kg.m/s:(1) - g-cm/s:(1e-05) - g.cm/s:(1e-05) - lb-in/s:(0.0115212) - Kg-m/s:(1) - Kg.m/s:(1)

- nnkg-nm/ns:(1e-18)

Quantity: RotationRate

Reference unit: rad/s
deg/s:(0.0174533) - rpm:(0.10472) - rps:(6.28319) - rad/ns:(1e+09)

Quantity: Moment

Reference unit: N-m
dyn-cm:(1e-07) - lb-in:(0.112985) - lbf-in:(0.112985) - kip-in:(112.985) - nN-nm:(1e-

18)

Quantity: Acceleration

Reference unit: m/s2
cm/s2:(0.01) - mm/s2:(0.001) - nm/ns2:(1e+09) - in/s2:(0.0254) - ft/s2:(0.3048)
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Quantity: EnergyDensity

Reference unit: J/m3
erg/cm3:(0.1) - lbf/ft2:(47.8867) - lbf/in2:(6895.68) - nJ/nm3:(1) - nnJ/nm3:(1e+09)

Quantity: Power

Reference unit: W
kW:(1000) - MW:(1e+06) - erg/s:(1e-07) - hp:(745.7) - ft-lbf/s:(1.356) - in-lbf/s:(0.113)

- nW:(1e-09) - nnW:(1e-18)

Quantity: PowerDensity

Reference unit: W/m3
kW/m3:(1000) - MW/m3:(1e+06) - erg/s-cm3:(0.1) - hp/m3:(745.7) - lbf/s-ft2:(47.8867)

- lbf/s-in2:(6895.68) - nW/nm3:(1e+18) - nnW/nm3:(1e+09)

Quantity: Temperature

Reference unit: degK
degC:(1) - degR:(1.8) - degF:(1.8)

Quantity: TemperatureRate

Reference unit: degK/s
degC/s:(1) - degR/s:(1.8) - degF/s:(1.8) - degK/ns:(1e+09) - degC/ns:(1e+09) -

degR/ns:(1.8e+09) - degF/ns:(1.8e+09)

Quantity: TemperatureInvrs

Reference unit: 1/degK
1/degC:(1) - 1/degR:(0.555556) - 1/degF:(0.555556)

Quantity: Length4thPower

Reference unit: m4
cm4:(1e-08) - mm4:(1e-12) - nm4:(1e-36) - km4:(1e+12) - in4:(4.16231e-07) - ft4:(0.00863097)

Quantity: MomentOfInertia

Reference unit: Kg-m2
g-cm2:(1e-07) - lb-in-s2:(0.112985) - lbs-in-s2:(0.112985) - nnKg-nm2:(1e-36)
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4.2 Actions

These commands are used to schedule various types of tasks to be performed at specific
times or steps during the simulation. Each command is entered in a single line of input.
These commands are contained in the ControlParameter input block.

ControlParameters {

. . .

FlushTHFiles Every 0.1 ms

GoInteractive AtTime 10. ms

WriteRestartFile Every 0.1 ms

. . .

}

4.2.1 Go Interactive

These commands are used to schedule when the program should go interactive. This
command is not executed for batch runs.

GoInteractive AtTime 10. ms

GoInteractive AtStep 10000

GoInteractive Every 0.1 ms

GoInteractive IfTimeStepLessThan 0.0001 ms

4.2.2 Print Progress Line

These commands are used to schedule the printing of a line to the output file. More that
one command can be used.

PrintProgressLine Frequency 1

PrintProgressLine Frequency 10 Value vmx

// Values can be vmx, ken (default), fmx, wrk

4.2.3 Write Restart File

These commands are used to control the frequency for writing restart files. More that
one command can be be used.

WriteRestartFile AtTime 10. ms

WriteRestartFile AtStep 10000

WriteRestartFile Every 0.1 ms

4.2.4 Execute Function

These commands are used to schedule the execution of a macro function. More that one
command can be used.
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ExecFunction ‘FunctionName’ AtTime 10. ms

ExecFunction ‘FunctionName’ AtStep 10000

ExecFunction ‘FunctionName’ Every 0.1 ms

ExecFunction ‘FunctionName’ IfTimeStepLessThan 0.0001 ms

4.2.5 Flush Time Hist Files

These commands are used to schedule when to flush the buffers of the time history
datafiles.

FlushTHFiles AtTime 10. ms

FlushTHFiles AtStep 10000

FlushTHFiles Every 0.1 ms

4.2.6 Read Input File

These command is used to schedule a reading event. At the requestest time or step,
MARS will read an input file which contains regular input commands. The input file
may be used to add parts to the model, make modifications to the model, write output
files, etc.

Read ‘FileName’ atTime 10. ms

Read ‘FileName’ atStep 10000

4.2.7 Write Plot DataFile

These commands are used to schedule when to write database snapshots to the plot data
file for later post-processing.

WritePlotDatFile data.plt Every 0.1 ms

More detail on this procedure are given in the HowTo section.

4.3 Time Step Control

The time step used in the MARS explicit time integration scheme can be controlled for
both stability and accuracy and is determined by the procedure described in this section.
First, MARS computes a Courant’s time step for each list. This time step is based
on the smallest time step for each element in a list. When multiple mechanisms come
into play simultaneously, such as contact conditions, penalty constraints, etc, the added
stiffness may require for the calculated time step to be further reduced. In general, it is
good practice to reduce the time step when a simulation goes unstable. Very often, this
is caused by overlapping effects. If this action does not solve the instability, then the
instability may be caused by some other reason, such as poor algorithm, possible bug,
etc. and the user should notify the developer.

MARS uses the following procedure to determine the time step used in the explicit
time integration scheme. First the Courant’s stability limit Dtc is determined list by list
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and the minimum is selected. The Courant’s time step is then multiplied by a scaling
factor s defined via input (default value for s is 0.9). The reduced time step is compared
to a maximum allowable time step Dtmax prescribed via input; the minimum of the two
is chosen. chosen.

Dt* = s * Dtc

Dt = min (Dt*, Dtmax)

The maximum time step Dtmax can be defined either as a constant throughout the simu-
lation or as a function of time. The second method is useful when we want the simulation
to start with a very small step (for accuracy and not stability like in an impact problem)
and then relax this condition as the simulation progresses. progresses.

For constant maximum time step the commands are:

ControlParameters {

Units English

TimeStepScalingFactor 0.7

MaximumTimeStep 0.001 ms

. . .

}

For time dependent maximum time step the commands are:

ControlParameters {

Units English

. . .

}

LoadCurve MaxStepHist {

// Max allowed time step starts with Dt = 0.1 microsec and grows

// linearly to 1 microsec in the first ms of the simulation,

// it remains constant thereafter

X-Units time ms

Y-Units time ms

ReadPairs 3

0.0 0.0001

1.0 0.0010

10.0 0.0010

}

ControlParameters {

MaximumTimeStepHistory MaxStepHist

}

4.4 Real time versus simulation time

Since MARS is an explicit solver, the integration time step is determined mostly by
stability considerations and in some cases for accuracy. Because time steps are typically
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of the order of microseconds, MARS is more indicated for simulating events that take
place in a very short time interval of the order of milliseconds, and typically less than a
full second. It is possible however to use MARS for solving slow events by compressing
time, as long as dynamic intertial effects remain neglegible or relatively small. When
time is compressed for simulation purposes, it may be necessary to keep track of real
time for mechanical effects, such as creep and strain rate effects. This is accomplished
using the commands below:

LoadCurve RealTime {

// one millisecond of simulation time is equivalent to 10 days

X-Units time ms

Y-Units time days

ReadPairs 2

0. 0.

1. 10.

}

ControlParameters {

RealTimeMap RealTime

}

The real time correction is treated within material models. Most material models do not
require this correction. The material model methods used for integrating stresses have
available two time steps: the simulation time step and the real time step. The real time
step is used only for treating strain rate effects.

4.5 Plotting Defaults

Plotting defaults are used for initializing the attributes of plottable lists.

PlottingDefaults {

TimeInterval 0.1 ms [1]

DisplacementScalingFactor 1000 // [2]

X-DisplacementScalingFactor 1000 // [2]

Y-DisplacementScalingFactor 1000 // [2]

Z-DisplacementScalingFactor 1000 // [2]

ThickShells

BinaryPlotFiles

}

[1] This command is used for setting a default time interval for all plot lists. This
value can be overwritten inside a PlotList input section

[2] These commands are used to magnify displacements. In most large deformation
problems, displacement magnification will produce meshes that are too distorted. It can
be useful for small deformation problems, like the fracturing of concrete specimens under
quasi-static loadings.
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4.6 Contact Defaults

Contact defaults are used for initializing some parameters in the contact lists. Cur-
rently, only the detection distance parameter and the node/edge/face thicknesses can be
specified. The syntax is shown below.

ContactDefaults {

UpdateInterval 0.1 ms // Discontinued (Apr 2011)

DetectionDistance 0.2 cm

StaticFriction 0.3 // Discontinued (Apr 2011)

DynamicFriction 0.2 // Discontinued (Apr 2011)

NodeThickness 0.1 in

EdgeThickness 0.2 in

FaceThickness 0.1 in

}

4.7 Global Updates

This command has been added in June 2011. It is meant to replace the updates specified
in some lists, such as contact lists, mpi-domain list, etc. The reason for this change is that
updates must be synchronized. For example, a contact update and a MPI domain decom-
position update must be done at the same time. For this reason, the UpdateInterval

command in the contact lists will be discontinued.

ControlParameters {

. . .

GlobalUpdateTimeInterval 0.1 ms

}

4.8 Dynamic Relaxation

Dynamic relaxation is a numerical technique that uses an artificial form of damping to
dissipate kinetic energy and converge to a steady state equilibrated solution if possible.
Dynamic relaxation can be used to compute steady-state stress under static loading
conditions in a system before a dynamic load is applied, or find a stable configuration
after a dynamic load has been applied. In dynamic relaxation, nodal velocities of all nodes
are scaled by a factor slightly less than one. There have been studies that show how to
optimize the scaling factor depending on the lowest natural frequency of the system. In
general, if the scaling factor is too small, the simulation overshoots the static solution,
possibly resulting in excessive plastic deformations or damage. If the scaling factor is too
large (closer to 1.), the convergence rate becomes very slow. There is no magic formula
for choosing the optimal scaling factor; the user has to develop a ‘feel’ for what works best
using intuition and a trial-and-error process.In some codes, the scaling factor is specified
via input and remains constant throughout the simulation. One disadvantage of this
approach is that the damping rate varies with the integration time step. In MARS, the
scaling factor is computed as to achieve a desired velocity reduction per unit time (1.
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microsecond). To make the approach more flexible, the relaxation profile is defined as
a function of time in a ‘LoadCurve’ object. Since the variables of a load curve require
dimensional units, the dynamic relaxation command must be specified father down in
the input stream, as shown in this example. example.

ControlParameters {

Units English

. . .

}

. . .

LoadCurve DynRelax {

X-units time ms

Y-units nondimensional

// dyn relax operates in the first ms

// with velocity reduction of 1% per microsec

ReadPairs 4

0.000 0.01

1.000 0.01

1.001 0.00

10.000 0.00

}

ControlParameters {

...

DynamicRelaxationCurve DynRelax // dynamic relaxation

}

To stop dynamic relaxation on restart use

ControlParameters {

. . .

NoDynamicRelaxation

}

4.9 Gravity

Gravity loads are automatically computed by specifying a gravity acceleraction. The
command can be placed anywhere in the input file after the ControlParameters section.
The direction of the acceleration can be prescribed either using one of the three axis
labels (’X’, ’Y’, or ’Z’) or more generically using the cosines of a generic direction.

ControlParameters {

. . .

Gravity -9.8 m/s2 Z

// or

Gravity 9.8 m/s2 Direction 0. 0. -1.

}
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It is possible to apply the gravity load progressively in time using a time history profile.
The time history profiles is specified via a load curve, in the same fashion of how it is done
for dynamic relaxation. The load curve provides a scaling factor which is multiplied by
the value of the acceleration specified after the keyword Gravity. In the example below,
the gravity is linearly increased from 0 to its final value of 9.8 m/s2 in 2 milliseconds and
then it is kept constant.

ControlParameters {

Units English

. . .

}

. . .

LoadCurve GravityHist {

X-units time ms

Y-units nondimensional

ReadPairs 3

0. 0.00

2. 1.00

100. 1.00

}

ControlParameters {

...

Gravity 9.8 m/s2 Direction 0. 0. -1. History GravityHist

}

4.10 Plugins

By plug-ins, we mean other codes that can be executed from MARS and perform specific
tasks. Currently, there are four plug-ins:

• Quasar: for displaying 3-d models

• Xth: for displaying time history plots

• triangle: for generating triangular meshes

• tetgen: for generating tetrahedral meshes

5 Miscellanous Objects

5.1 Reference Systems

Reference systems are used for two main purposes:

1. When generating parts, they are used for aligning a new part in the desired orien-
tation.
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2. In finite element formulations, they are used for aligning the local element axis and
computing internal strains and stresses.

Three reference systems are available:

1. cartesian,

2. cylindrical, and

3. spherical.

Some applications require the reference system to return a preferential direction, which
is used for aligning the first local axis; use the keyword ‘return’ to select the preferential
axis.

5.1.1 Cartesian RefSys

ReferenceSystem RSYS cartesian {

// 1. Define origin (Opt., default = 0, 0, 0)

Origin 0.2 in 0.6 in 0. in

// 2. Define orientation (Req.)

FirstDirection 1. 0. 0.

SecondDirection 0. 1. 0.

// 3. Modify (Opt.)

Translate 0.4 in 0.3 in 0.6 in

X-Rotate 45

// 4. Select ‘Return’ direction

Return X

// also available Y, and Z

}

5.1.2 Cylindrical RefSys

ReferenceSystem RSYS cylindrical {

// 1. Define origin (Opt., default = 0, 0, 0)

Origin 0.2 in 0.6 in 0. in

// 2. Define orientation (Req.)

AxialDirection 1. 0. 0.

RadialDirection 0. 1. 0.

// 3. Modify (Opt.)

Translate 0.4 in 0.3 in 0.6 in

X-Rotate 15 deg

Y-Rotate 35 deg

Z-Rotate 180 deg

// 4. Select ‘Return’ direction

Return HoopDirection // for shells and solids

}
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5.1.3 Spherical RefSys

ReferenceSystem RSYS spherical {

// 1. Define origin (Opt., default = 0, 0, 0)

Origin 0.2 in 0.6 in 0. in

// 2. Define orientation (Req.)

AxialDirection 1. 0. 0.

RadialDirection 0. 1. 0.

// 3. Modify (Opt.)

Translate 0.4 in 0.3 in 0.6 in

X-Rotate 15 deg

Y-Rotate 35 deg

Z-Rotate 180 deg

// 4. Select ‘Return’ direction

Return HoopDirection // for shells and solids

// also available AxialDirection, RadialDirection

}

5.2 Load Curves

The LoadCurve object is used to prescribe a function of the type y = f(x) in tabulated
form by entering (xi, yi) pairs. These tabulated functions are used in many algorithms.
If during interpolation, the value of x falls outside of the definition range, the value of
y is not extrapolated. Instead, it is set to the first or last value in the table. The input
data pairs must be in ascending order of x .

LoadCurve ‘CurveName’ {

// 1. Specify units (Req.)

X-units time ms

Y-units pressure psi

// 2. Enter tabulated function (Req.)

ReadPairs 4

// tim prss

0.000 0.

0.005 100.

0.030 0.

1.000 0.

// 3. Modify function (Opt.)

// the following commands are optional

X-Scale 2. // scale x-variable

X-Offset 0.004 // offset x-variable

Y-Scale 2. // scale y-variable

Y-Offset 0.004 // offset y-variable

Differentiate // differentiate curve [1]

DisplacementToVelocity// same as Differentiate [1]

}
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[1] The Differentiate (or DisplacementToVelocity) command (is used to compute
a function which is the derivative of the input function. Since the entered function
is assumed to vary linearly between the x-points, its derivative is a piecewise constant
function over each interval. The resulting table has (2*npt-2) data points. The derivative
over each interval i (with i = 1, 2, .. , npt-1) is defined as

zi =
yi+1 − yi
xi+1 − xi

over the interval xi, xi+1 − ε (1)

For example, the input function

LoadCurve ‘CurveName’ \{

X-units time ms

Y-units length in

ReadPairs 3

0.000 0.

1.000 0.01

6.000 0.015

DisplacementToVelocity

\}

will produce the following tabulated function

ms in/ms

0.000 0.01

0.999999 0.01

1.000 0.001

5.999999 0.001

Some common functions can be internally generated in tabulated form. The available
functions are listed below: below:

LoadCurve ‘CurveName’ {

// 1. Specify units (Req.)

X-units time ms

Y-units pressure psi

// 2. Generate internal function

// yi = 5. sin(45 xi) for xi = i*0.1 and i=0,100

Generate Sin { A 5. w 45. dt 0.1 n 100 }

// yi = 5. cos(45 xi) for xi = i*0.1 and i=0,100

Generate Cos { A 5. w 45. dt 0.1 n 100 }

}

It is also possible to internally generate more complex histories by combining differ-
ent equations over separate time intervals. This is accomplished using the command
GenerateMultiPatch. The example below shows how to generate a continuous curve
that is 0 in the first ms, it goes from 0 to 2 using a cosine function in the second ms, it
stays at 2 in the third ms, it goes back to 0 using a cosine function in the fourth ms, and
stays at 0 in the fifth ms.
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LoadCurve ‘CurveName’ {

X-units time ms

Y-units velocity m/s

GenerateMultiPatch {

point 0. 0.

cos { n 18 a0 180 A 180 t0 1. T 1. B 1. C 1. }

cos { n 18 a0 0 A 180 t0 3. T 1. B 1. C 1. }

point 5. 0.

}

}

Currently, there are five functions available: cos, sin, exp, log, and e-x2. These func-
tions are described below. n is the number of intervals, t0 is the beginning of the time
interval and T is the length of the time interval over which the function is defined.The
other parameters are explained by the equations following the command line.

cos \{ n 18 t0 1. T 1. a0 180 A 180 B 1. C 1. \}

// angle varies from a0 to (a0+A)

// for (i=0; i<=n; i++) \{

// t = t0 + i*T/n;

// angle = a0 + i*A/n;

// y = B*cos(angle) + C;

// \}

sin \{ n 18 t0 1. T 1. a0 180 A 180 B 1. C 1. \}

// for (i=0; i<=n; i++) \{

// t = t0 + i*T/n;

// angle = a0 + i*A/n;

// y = B*sin(angle) + C;

// \}

log \{ n 300 t0 0. T 3. A -2 B 3. C 0. \}

// for (i=0; i<n; i++) \{

// t = t0 + i*dt;

// y = (A*log(C*t) + B);

// \}

exp \{ n 300 t0 0. T 3. A -2 B 3. C 0. \}

// for (i=0; i<n; i++) \{

// t = t0 + i*dt;

// y = (A*exp(C*t) + B);

// \}

e-x2 \{ n 300 t0 0. T 3. A -2 B 3. C 0. \}

// for (i=0; i<n; i++) \{
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// t = t0 + i*T/n;

// y = A*exp(-(t-C)*(t-C)) + B;

// \}

Try the examples below that generate intersting combination.

GenerateMultiPatch {

// this curve models a smooth sinusoidal bump with amplitude 2

// in the 2nd and 3rd ms

point 0. 0.

cos { n 36 t0 2. T 2. a0 180 A 360 B 1. C 1. }

point 5. 0.

}

GenerateMultiPatch {

// This curve could be used to scale the time step to

// be small (1 microsecond) at the beginning of the simulation

// and grow to 3 microseconds later in the simulation.

e-x2 { n 400 x0 0 dx 0.01 A 3 B 0 C 1. }

}

GenerateMultiPatch {

// this curve uses a sinusoidal function in the first ms to ramp up

// from 0 to 3 and then an exponential (e^(-x^2)) for the rest

// to simulate a smooth decay

sin { n 18 a0 0 A 90 t0 0. T 1. B 3. C 0. }

e-x2 { n 300 x0 1 dx 0.01 A 3 B 0 C 1. }

}

In time history lists, the current value of a time dependent function can be printed using
the command lc-‘curveName as shown below

TimeHistoryList ... {

. . .

lc-‘curveName’

}

5.2.1 Load Curves Lists

It is possible to group a set of load curves that share similar characteristics in a list of
load curves (see specific topic in the Misc. section of this manul.) This is the case for
reading pressure histories generated by a fluid code.
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5.3 Built-In Blast Loads

The built-in blast loads consists of a series of objects that are used in face lists (triangular
and quadrilateral faces) for generating pressure loads. Typically, these loads are used
for approximating the effects of blast. Pressures are computed taking into account the
location of the explosion and the position and orientation of the exposed faces.

5.3.1 ConWep

ConWep is a collection of conventional weapons effects calculations from the equations
and curves of TM 5-855-1, ‘Design and Analysis of Hardened Structures to Conventional
Weapons Effects.’ ConWep performs a variety of conventional weapons effects calcula-
tions including an assortment of airblast routines, fragment and projectile penetrations,
breach, cratering, and ground shock. shock.

The equations used in this special load object are based on a report by Kingery, C.N.,
and Bulmash, G. ‘Airblast Parameters from TNT Spherical Air Burst and Hemispherical
Surface Burst’, Technical Report ARBRL-TR-02555, U.S. Army ARDC-BRL, Aberdeen
Proving Ground, MD, April 1984, and other reports as follows:

1) The following methods are based on the equations from BRL Technical Report
ARBRL-TR-02555 for predicting positive phase parameters for either a hemispherical
surface burst or spherical free air burst:

bool equationsAreNotValid();

real peakIncidentPressure(); // [psi]

real incidentImpulse(); // [psi-ms]

real normallyReflectedPressure(); // [psi]

real normallyReflectedImpulse(); // [psi-ms]

real timeOfArrival(); // time of arrival of blast wave [ms]

real duration(); // time positive phase is done [ms]

real shockFrontVelocity(); // [ft/ms]

real rfp(real p, char tp); // range for given charge and pres. [ft]

real rfi(real i, char ti); // range for given charge and imp. [ft]

real rft(real t, char tt); // range for given charge and time. [ft]

2) The following methods, based on the modified Friedlander wave form, are used to
determine shape factor, pressure history and dynamic pressure history for the positive
phase:

real waveShapeFactor(real imp, real pmx, real dt);

real pressureAtTime(real tau, real pmx, real wsf); // [psi]

real dynPrssAtTime(real tau, real q, real wsf); // [psi]

3) Use the AFWL-70-127 curves to determine the following:

real reflectedPressureCoefficient(real alp, real pso);

4) Use the TM 5-1300 procedure (Figure 2-192) to find the following:
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real reflectedImpulseAtAnAngle(real alp); // [psi-ms]

5) Use formula presented by W.E. Baker to determine the following:

real peakDynamicPressure(real pso); // [psi]

The input commands for specifying this special load are:

SpecialLoad BRST ConWep {

Location 1. in 20. in 0. in

Weight 100 lb

[ Hemispherical ]

Offset 0.012 ms

}

The Offset parameter is used to offset the time of blast so that the shock wave reaches
the exposed surfaces at time zero of the numerical simulation. To compute the optimal
offset time, execute the first calculation with an offset of 0. Then, look at the output and
it will tell you when the shock wave reaches the surface. Use that value to offset the blast.
This operation is done manually because if multiple explosions had to be performed in
the same simulation, the user must have the ability to control the relative offset.

5.4 Random Number Distributions

The random number generation object generates random numbers using one of the com-
mon distributions equations. Currently, four distributions are available. Random number
generators are used for the definition of some inputs. In most cases, the user can select
which distribution to use, since they are interchangable.

5.4.1 Weibull distribution

The Weibull distribution has been used very effectivley for characterizing probabilistic
failure in materials and mechanical components. The probability density function is
defined as

P (x) =
g

a

(
x−m
a

)(g−1)

exp
(
−
(
x−m
a

)g)
for x > m, = 0 otherwise

where where

m: location parameter mu

a: scale parameter alpha

g: shape parameter gamma

The cumulative distribution function is defined as

F (x) = 1− exp
(
−
(
x−m
a

)g)

The input command is given by
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Weibull { m 0.4 a 1. g 2 [ n ] }

where the optional ’n’ is used to normalize the distribution.

5.4.2 Uniform distribution

Uniform { d 0.2 }

numbers are generated evenly between 1-d/2 and 1+d/2

5.4.3 Gaussian distribution

The Gaussian distribution or normal distribution is a common ‘bell shaped’ distribution.
The probability density function is defined as

PDF(x) = 1/sqrt(2*PI*s^2) exp[-(x-m)^2/2*s^2]

where

s: standard deviation

m: mean

MARS generates random numbers which are consistent with a Gaussian distribution
using the Box-Muller transformation. The Box-Muller Transformation (polar form) gen-
erates a pair of random numbers which have a Gaussian distribution with a zero mean
and a standard deviation of one. See See

http://www.taygeta.com/random/gaussian.html
The input command is

Gaussian { s 2. m 0.3 mn 0. mx 4. }

where

mn: is a lower limit

mx: is un upper limit

In other words, random numbers less than ‘mn’ or larger than ‘mx’ are rejected. ‘mn’
and ‘mx’ are optional inputs.

5.4.4 Fuller distribution

The Fuller/Thompson equation is defined as

P = (d/u)^c

where

P = percent finer than the sieve

d = aggregate size being considered

u = maximum aggregate size to be used

c = parameter which adjusts curve for fineness or coarseness
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Fuller { c 0.5 l 0.4 cm u 1.2 cm [x] }

// c: fuller coefficient

// l: lower value

// u: upper value

// x: examine

The distribution is defined in the range of aggregate size between ’l’ and ’u’, where
’l’ is the minimum aggregate size being considered. For maximum particle density, ’c’
is approximately 0.5 according to Fuller and Thompson. In the example above, if we
consider an aggregate size of 0.8 cm, then P = (0.8/1.2)0.5 = 81% of aggregates are
smaller than 0.8 cm. For details, see this web site:

http://training.ce.washington.edu/wsdot/modules/03 materials/03-2 body.htm

5.5 Colors

Colors are used in the definition of surfaces and lines. There are two methods for speci-
fying colors. The first by selecting a color from the built-in list using the command

Color Red

Available colors are: Red, Green, Blue, Darkgray, Lightgray, Black, Cyan, Steel,
Rust, White, Yellow, Orange, Gold, Patina, Clear. The other, by specifying the rgb
composition using the command

Color rgb 0.4 0.6 0.2

where the three numbers following the ‘rgb’ keyword indicate the brightness of each
color (red, green, blue in this order) on a scale from 0 to 1.

5.6 Strain Gages

The StrainGage object is designed to simulate the behavior of actual strain gages. As
such, it can provide a more realistic measurement of local deformations for comparison
with test data than the various strain metrics from continuum mechanics. The strain
gage object is defined by selecting two or more material points inside or on the surface
of a part. The points are placed in correspondence of where the physical strain gage
is placed. While physical strain gage are only placed on the surface of a part, these
numerical strain gage can be also placed in the interior of a part. The numerical strain
gage is defined using its location, length, and direction.

The main purpose of the numerical strain gage is to produce a time history record
of the local strain which can be used for comparison with test data or just for better
understanding of the results from the simulation. The numerical strain gage computes
the a total length by summing the lengths of the segment[s] used in the definition. The
length L0 at time 0 is assumed to be the reference length at rest of the strain gage. The
linear strain eps(t) at time t is defined as eps(t) = (L(t)/L0) - 1, where L(t) is the strain
gage length at time t. The logarithmic strain is defined as eps(t) = ln(L(t)/L0).

The structure of a typical strain gage input is shown below.

StrainGage ‘GageName’ ‘type’ {
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// type dependent parameters

. . .

}

More details on how to place strain gages on various types of meshes are discussed in the
subsections below.

5.6.1 Strain-Gage for hexahedral solid lists

This type of strain gage can be placed not only on the surface of a hex solid element
mesh, but also inside it. Inside strain gages do not make any physical sense, but in these
simulations can be used to get a measure of strain, without using the strain tensor. A
typical input is shown below:

StrainGage ‘gageName’ HexSolids {

HexSolidList ‘listName’ // req

[Description Strain gage at location X5]

CenterAt 0. cm 10. cm 9. cm // req

Length 2. cm // req

Segments 3 // default = 1

Direction 0. 1. 0. // req

[CreateParaviewPlots] // [1]

}

[1] It creates two Paraview files: SG-‘gageName’-hx.vtu and SG-‘gageName’-sg.vtu, one
for the surfaces of the solid, and the second one contains a line representing the strain
gage.
All points of the strain gage should be inside the solid.

5.6.2 Strain-Gage for tetrahedral solid lists

Strain gages only be placed on the surface or in the interior of a tet solid element mesh.
Typical input is shown below:

StrainGage ‘gageName’ TetSolids {

TetSolidList Solid // req

[ Description Strain gage at location X5 ]

CenterAt 0. cm 0. cm 0. cm // req

Length 2. cm // req

Segments 3 // default = 1

Direction 0. 1. 0. // req

}
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5.6.3 Strain-Gage for quadrilateral and triangular face lists

The strain gage is placed on the surface of a triangular face mesh. A quadrilateral mesh
can be specified; in this case, the mesh is split into triangular faces. Typical input is
shown below:

StrainGage ‘GageName’ QuadFaces {

QuadFaceList ‘listName’ // req

[Description Strain gage at location X5]

CenterAt 0. cm 10. cm 9. cm // req

Length 2. cm // req

Segments 3 // [Default 1]

Direction 0. 1. 0. // req

[ParaviewPlotCheck]

}

StrainGage ‘GageName’ TriangFaces \{

TriangFaceList ‘listName’ // req

\}

5.6.4 Strain-Gage for quadrilateral shell lists

Strain gages can be placed on the top surface, bottom surface, or mid-plane (membrane
strains) of a quadirlateral shell element mesh. Typical input is shown below:

StrainGage ‘gageName’ QuadShells {

QuadShellList ‘ShellPartName’ // req

[ Description Strain gage at location X5 ]

CenterAt 0. cm 10. cm 9. cm

TopSurface // also ‘BottomSurface’ [1]

Length 2. cm

Segments 3

Direction 0. 1. 0.

}

[1] If neither TopSurface or BottomSurface keyword is specified, then the default is
mid-plane surface for computing membrane strains.

5.6.5 TimeHistories

The strain gage computes a single variable: the total strain at the prescriped point over
a prescribed length. The only purpose of a StrainGage is to provide a measurement of
local strain for time history lists. Typical application show up as

StrainGage Gage1 {

. . .

}
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. . .

TimeHistoryList HIST {

. . .

sg-Gage1 linear S 1000. // ‘linear’ or ‘logarithm’ [1]

}

[1] The keywords linear and logarithm are used to specify how strains are computed
and it makes a difference mostly for large deformations. Default is linear.

5.7 Accelerometer

The Accelerometer object is designed to simulate the behavior of actual accelerometers
for direct comparisons with acceleration records measured in test setups. The acceleration
computed by the Accelerometer object employs a corotational formulation suitable for
large rotations. As such, it may be different than the acceleration computed at the nodes
in the global fixed reference system. While physical accelerometers are only placed on
the surface of a part, these numerical accelerometers can be also placed in the interior of
a part. The numerical acceleration is defined using its location, length, and direction.

The main purpose of the numerical accelerometer is to produce a time history record
of the local acceleration which can be used for comparison with test data or just for
better understanding of the results from the simulation. Accelerations are computed as
follow

an =
~v(t)− ~v(t−∆t)

∆t
· ~n

where n is the corotational direction aligned with the accelerometer.
There are two types of numerical accelerometer: 1. Those attached to a finite element

component, 2. Those embedded in a discrete element model (cloud of points).
Typical input is shown below.

Accelerometer ‘GageName’ type {

// part on which the strain gage is attached to

// type dependent parameters

. . .

}

More detailed input on how to place an accelerometer on various types of meshes are
discussed in the subsections below.

5.7.1 Attached to quadrilateral surfaces

Accelerometer AG01 QuadFace {

FaceList OuterPlate

Description Accelerometer AG-01

CenterAt 0. in 10. in 9. in

Tolerance 0.01 in

Direction 0. 0. 1

}
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5.7.2 Attached to triangular surfaces

Accelerometer AG01 TriangFace {

FaceList OuterPlate

Description Accelerometer AG-01

CenterAt 0. in 10. in 9. in

Tolerance 0.01 in

Direction 0. 0. 1

}

5.7.3 Attached to the surfaces of a beam element

Accelerometer AG01 Beam {

BeamList OuterPlate

Description Accelerometer AG-01

CenterAt 0. in 10. in 9. in

Tolerance 0.01 in

Direction 0. 0. 1

}

5.7.4 TimeHistories

The accelerometer computes a single variable: the acceleration component at the pre-
scriped point in the prescribed corotational direction. The only purpose of an Accelerometer

is to provide acceleration for time history lists. Typical application show up as

Accelerometer Gage1 QuadFace {

. . .

}

. . .

TimeHistoryList HIST {

. . .

ac-Gage1

}

5.8 Equations

This is a collection of objects that implement global equations, such as pressure-volume
equations, etc.

5.8.1 Pressurized Volume

Equation ‘name’ PressurizedVolume {

InitialVolume 34.53 cm3

InjectionHistory ‘name2’

// Enter the name of fluid or BulkModulus
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Oil / Water / Air

Temperature 70 degF

}

5.8.2 Injected Fluid

Use this equation when ... Work still in progress

LoadCurve ‘name2’ {

// Specify flow rate history

. . .

}

Equation ‘name’ InjectedFluid {

InitialVolume 34.53 cm3

InjectionHistory ‘name2’

// Enter the name of fluid or BulkModulus

Oil (K = 1.5e9 Pa) / Water (K = 2.2e9 Pa) / Air (1.42e5 Pa)

BulkModulus 10e6 psi

}

5.8.3 Adiabatic Compression

This feature was inserted in the code in the spring of 2009. The purpose of this feature
is to enable the numerical simulation of the effect of air trapped inside a cavity whose
volume changes during the simulation. The pressure in the cavity is related to the change
in volume using the adiabatic equation:

p(t)V (t)γ = const
where p(t) is the pressure, V (t) is the volume of the cavity, and γ is the adiabatic

index of the gas. The ability to model these conditions was introduced into the MARS
code through a new C++ class denoted as AdiabaticEquation . This class is derived
from the base class Equation . The ‘AdiabaticEquation’ class implements the very simple
adiabatic equation:

p(t) = (V0/V (t))γp0

where p0 and V0 are the initial value of the pressure and volume respectively. The
method implemented in Mars actually returns the overpressure, which is defined as

po(t) = p(t)− p0

The input block requires three parameters as shown below:

Equation ‘name’ AdiabaticCompression {

InitialVolume 34.53 cm3

InitialPressure 14.7 psi

Gamma 1.4

[ InvertSign ]

}

The InvertSign command should be used when the surfaces point toward the cavity
rather than away from it.
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5.9 Material Models

5.9.1 Elastic Material Model

The elastic material model implements the simplest forms of constitutive equations in
three main formats: tensorial, plane stress (for shells), and vectorials (for beams).

Material ELST elastic {

Description Stainless Steel ...

Density 7.8 g/cm3

YoungsModulus 29e6 psi

PoissonsRatio 0.3

}

State variables for tensorial equations

1: XX-Stress [stress]

2: YY-Stress [stress]

3: ZZ-Stress [stress]

4: YZ-Stress [stress]

5: ZX-Stress [stress]

6: XY-Stress [stress]

State variables for plane stress equations

1: XX-Stress [stress]

2: YY-Stress [stress]

3: YZ-Stress [stress]

4: ZX-Stress [stress]

5: XY-Stress [stress]

State variables for vectorial equations

1: "Normal stress" [stress]

2: "Shear stress X" [stress]

3: "Shear stress Y" [stress]

5.9.2 Elasto-plastic Material Model

Material PLST plastic {

Description Stainless Steel ...

Density 7.8 g/cm3

YoungsModulus 29e6 psi

PoissonsRatio 0.3

YieldStress 80e3 psi

HardeningModulus 200e3 psi

#-- select one of the three hardening options below

42



IsotropicHardening

KinematicHardening

Beta 0.5 // beta = 0 istropic, beta = 1 kinematic

hmx 8e3 psi // Bounding stress for friction damping

}

‘Friction’ damping provides hysteretical energy loss for each cycle related to cycle ampli-
tude and not strain rate. Because it is non-viscous the term ‘friction’ damping is used.
Use a bounding stress in the order of one percent of the yield stress if damping is desired.

State variables for tensorial equations

1: XX-Stress [stress]

2: YY-Stress [stress]

3: ZZ-Stress [stress]

4: YZ-Stress [stress]

5: ZX-Stress [stress]

6: XY-Stress [stress]

7: Effective plastic strain [nondimensional]

8: XX-Back stress [stress]

9: YY-Back stress [stress]

10: YZ-Back stress [stress]

11: ZX-Back stress [stress]

12: XY-Back stress [stress]

13: XX-Friction stress [stress]

14: YY-Friction stress [stress]

15: ZZ-Friction stress [stress]

16: YZ-Friction stress [stress]

17: ZX-Friction stress [stress]

18: XY-Friction stress [stress]

19: XX-Strain [nondimensional]

20: YY-Strain [nondimensional]

21: ZZ-Strain [nondimensional]

22: YZ-Strain [nondimensional]

23: ZX-Strain [nondimensional]

24: XY-Strain [nondimensional]

25: Energy [energy]

State variables for plane stress equations

1: XX-Stress [stress]

2: YY-Stress [stress]

3: YZ-Stress [stress]

4: ZX-Stress [stress]

5: XY-Stress [stress]

6: Effective plastic strain [nondimensional]
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7: XX-Back Stress [stress]

8: YY-Back Stress [stress]

9: YZ-Back Stress [stress]

10: ZX-Back Stress [stress]

11: XY-Back Stress [stress]

12: XX-Friction Stress [stress]

13: YY-Friction Stress [stress]

14: YZ-Friction Stress [stress]

15: ZX-Friction Stress [stress]

16: XY-Friction Stress [stress]

17: Not Used [stress]

18: XX-Strain [nondimensional]

19: YY-Strain [nondimensional]

20: XY-Strain [nondimensional]

State variables for vectorial equations

1: "Normal stress" [stress]

2: "Shear stress X" [stress]

3: "Shear stress Y" [stress]

4: "Effective plastic strain" [nondimensional]

5.9.3 Rate Sensistive Elasto-plastic Material Model

Material PLST plastic {

Description Stainless Steel ...

Density 7.8 g/cm3

YoungsModulus 29e6 psi

PoissonsRatio 0.3

YieldStress 80e3 psi

HardeningModulus 200e3 psi

#-- select one of the three hardening options below

IsotropicHardening

KinematicHardening

Beta 0.5 // beta = 0 istropic, beta = 1 kinematic

D1 100. // [1/s] strain rate for intermediate point

sy1 90e3 psi // yield stress for intermediate point

syi 100e3 psi // yield stress for infinite strain rate

}

5.9.4 Johnson-Cook Model

The Johnson-Cook model is purely empirical and gives the following relation for the flow
stress

σy(εp, ε̇p, T ) = (A+B(εp)
n)
(
1 + C ln

(
ε̇∗p
))

(1− (T ∗)m)
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where
σy is the flow stress
εp is the equivalent plastic strain
A, B, C, n, and m are material constants
ε∗p is the normalized strain-rate
T ∗ is the normalized temperature

The normalized strain-rate and temperatures in the equation above are defined as

ε̇∗p =
ε̇p
ε̇p0

and T ∗ =
T − T0

Tm − T0

The input commands for specifying the material parameters are

Material PLST JohnsonCook {

Description Stainless Steel ...

Density 7.8 g/cm3

YoungsModulus 29e6 psi

PoissonsRatio 0.3

A 80e3 psi

B 80e3 psi

C 4.

n 4.

m 4.

ReferencePlasticStrainRate 0.0001 1/s

ReferenceTemperature 40 degC

}

This material model is available fos solids, shells, beams, and trusses. The following
materials have built-in properties which were found in the literature

Material PLST JohnsonCook {

Steel-1045

Steel-4340

Al6082-T6

Ti6Al4V

}

To plot stress strain curves for different strain rates use the Test command, e.g.

Material PLST JohnsonCook {

Steel-1045

Test Tensor Tension

}

which generates a time history file named mat.th.
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5.9.5 LDPM Concrete Material Model

The input section for the LDPM material model consists of three subsections each spec-
ifying a set of parameters and the density parameter:

Material CONC LDPM {

Density 2.400 g/cm3

MixDesign { ... }

StaticParameters { ... }

StrainRateEffect { ... }

}

The first set ( MixDesign ) is relevant to the geometrical definition of the concrete
meso-structure and includes cement content, c, water-to-cement ratio, w/c, aggregate-
to-cement ratio, a/c, maximum aggregate size, da, Fuller coefficient, nF , and minimum
aggregate size, d0. The MARS input lines for this set are:

Material CONC LDPM { // for standard concrete

MixDesign {
CementContent 300 kg/m3 // c
WaterToCementRatio 0.5 // w/c
AggregateToCementRatio 6.0 // a/c
MaxAggregate 0.75 in // da
FullerCoefficient 0.5 // nF
MinAggregate 0.375 in // d0

}
}

The first four parameters are obtained directly from the concrete mix design. The Fuller
coefficient is identified by performing a best-fit of the experimental particle-size dis-
tribution (sieve curve). The last parameter (minimum aggregate size, d0) governs the
resolution of the model and, consequently, the number and direction of the possible crack
paths in the meso-structure. Clearly, with a small minimum aggregate size, d0, it is pos-
sible to reproduce fine features of crack initiation and propagation in the meso-structure,
but at the same time, the computational cost tends to be very high.

The second set ( StaticParameters ) controls the meso-scale static behavior. This
set consists of sixteen parameters which are used in the facet constitutive law. The
equations for the constitutive law are described in this paper . The MARS input lines for
the second set are:

StaticParameters { // for standard concrete

NormalModulus 46360 MPa // E0

Alpha 0.25 // α
TensileStrength 3.0 MPa // σt
TensileCharacteristicLength 150 mm // `t
ShearStrengthRatio 2.5 // σs/σt
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SofteningExponent 0.2 // nt
CompressiveStrength 120 MPa // σc0
InitialHardeningModulusRatio 0.33 // Hc0/E0

TransitionalStrainRatio 3.0 // κc0
DeviatoricStrainThresholdRatio 0.5 // κc1
DeviatoricDamageParameter 5.0 // κc2
InitialFriction 0.4 // µ0

AsymptoticFriction 0.0 // µinf

TransitionalStress 60.0 MPa // σN0

DensificationRatio 1.0 // Ed/E0

VolumetricDeviatoricCoupling 0.0 // β
}

Normal elastic modulus (stiffness for the normal facet behavior), E0, and shear-normal
coupling parameter (ratio between shear and normal elastic stiffness), α, govern LDPM
response in the elastic regime. In particular, the macroscopic Poisson’s ratio depends
exclusively on α; the typical concrete Poisson’s ratio of about 0.18 can be obtained by
setting α = 0.25. Approximated analytical relationships between E0, α, and concrete
macroscopic elastic parameters (Young’s modulus E and Poisson’s ratio ν) are reported
in the reference mentioned above.

Tensile strength, σt, and tensile characteristic length, `t (or equivalently the tensile
fracture energy, Gt, where `t = 2E0Gt/σ

2
t ), govern the softening tensile fracturing be-

havior of LDPM facets and, consequently, govern all macroscopic behaviors featuring
softening (e.g., tensile fracturing and unconfined and low-confined compression).

Softening exponent, nt, governs the interaction between shear and tensile behavior
during softening at the facet level. More specifically it governs the rate at which facet
tension-shear behavior transitions from softening (in pure tension) to plastic (in pure
shear). At the macroscopic level, the softening exponent governs the difference in tough-
ness or post-peak ductility observed during tensile and compressive failure simulations.
By increasing nt, one obtains more ductile behavior in both compression and tension,
but the increase is (as a percentage) more pronounced in compression than in tension.

Shear strength, σs, is the facet strength for pure shear and affects mostly the macro-
scopic behavior in compression (both unconfined and confined). It is specified as a
ratio ( ShearStrengthRatio ) between shear strength and tensile strength σs/σt. For
σs/σt greater than 2, the shear strength influences strongly the macroscopic unconfined
compression strength but has no significant effect on the macroscopic tensile strength.
Consequently, the shear-to-tensile strength ratio can be considered to govern the ratio
between the macroscopic compressive and tensile strengths. For σs/σt less than 2 the
shear strength might affect the tensile macroscopic behavior. However this is of limited
interest since in that situation the ratio between the macroscopic compressive and tensile
strengths results outside the usual range (8-12) for standard strength concrete.

Yielding compressive stress ( CompressiveStrength ), σc0, initial hardening modulus
( InitialHardeningModulusRatio ), Hc0, transitional strain ratio ( TransitionalStrainRatio
), κc0, and densified normal modulus , Ed (this is specified using the DensificationRatio
parameter), define the behavior of the facet normal component under compression and
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affect the macroscopic behavior in compression. In the case of a hydrostatic compression
test, σc0 governs the macroscopic volumetric stress at which yielding (pore collapse) be-
gins; Hc0 governs the slope of the volumetric stress-strain curve at the onset of yielding;
and κc0 governs the volumetric strain at which concrete starts to reharden due to material
densification. Finally, Ed governs the tangent volumetric stiffness at very high levels of
confinement as well as the volumetric unloading/reloading stiffness.

Shear boundary parameters, i.e., initial internal friction coefficient ( InitialFriction
), µ0, internal asymptotic friction coefficient ( AsymptoticFriction ), µ∞, and transi-
tional stress ( TransitionalStress ), σN0, contribute to LDPM response in compression
while they have basically no effect on tensile behavior. Internal asymptotic friction co-
efficient influences mainly the triaxial compressive behavior at high-confinement, and
since the majority of experimental data shows plateauing stress for increasing strain
with high-confinement, µ∞ = 0 can be assumed in most cases.

LDPM parameter κc1 and κc2 govern the nonlinear evolution of the normal facet
stress in compression. Specifically, κc1 is the deviatoric-to-volumetric strain ratio at
which rehardening after pore collapse is prevented by deviatoric strain induced damage,
and κc1 determines the extent of this deviatoric effect on rehardening behavior.

Finally, unloading-reloading parameter kt determines the size of hysteresis cycles dur-
ing unloading-reloading for the tensile fracturing facet behavior and governs the cyclic
behavior at the macroscopic level in the case of both compressive and tensile behavior.

Calibration of LDPM parameters can be obtained through the best fitting of the
complete load-displacement curves relevant to five different experimental tests: (1) hydro-
static compression; (2) unconfined compression; (3) fracture test (with unloading/reloading
cycles if cycling loading is of interest and the parameter kt needs to be calibrated) ; (4) tri-
axial compression at low-confinement; and (5) triaxial compression at high-confinement.
In this work, the best fitting was performed through a heuristic “trial and error” proce-
dure based on a visual assessment of the agreement between the experimental data (typ-
ically consisting of the averaged response of multiple samples) and the numerical result
obtained by averaging the numerical response of three samples with distinct mesostruc-
tural geometries.

The third and final set ( StrainRateEffect ) is used to characterize dynamic effects
and consists of three parameters:

StrainRateEffect {

PseudoTimeFactor 1.0

ReferenceStrainRate 1E-6 1/s // cc0

RateEffectParameter 5E-2 // cc1

}

The PseudoTimeFactor is used to correctly integrate the constitutive equation while
using a fictitiously higher rate of loading for the simulation. For example, assume that
you have an experimental test in compression on a specimen loaded at 0.01 in/sec. In this
case you have rate effect on the constitutive equation (and the macroscopic behavior) but
the inertia effects are likely to be small or negligible (compared to the internal energy,
a ratio of about 1000 is typically fine). Then you may decide to run the simulation at
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(for example) 0.2 in/sec to save computational time while not changing significantly the
kinetic energy (compared to the internal energy). However if you do so you need to
make sure that the constitutive equation ‘feels’ a loading rate of 0.01 in/sec otherwise
you would not get the response associated with 0.01 in/sec which is what you want. You
make the constitutive law ‘feeling’ 0.01 in/sec even if you run at 0.2 in/sec by setting the
PseudoTimeFactor = 0.2 / 0.01 = 20. 20.

Choose LDPM Parameters based on compressive strength fc and Young’s
Modulus E

Material CONC LDPM {

StandardConcrete {

MacroscopicCompressiveStrength 30 MPa // optional

YoungModulus 30 GPa // optional

}

}

If neither of MacroscopicCompressiveStrength and YoungModulus is given, the default
parameters for standard concrete will be used. Given the reference values as Eref = 30
GPa, f refc = 30 MPa, µ = 0.18, f reft = 0.1f refc = 3 MPa.

1. Estimate E = Eref ( fc

fref
c

)0.5, if E is not provided

2. α = 0.25 if not provided

3. E0 = Eref
0

E
Eref

4. σt = σreft
fc

fref
c

, `t = 150 mm, σc0 = σrefc0
fc

fref
c

, σN0 = σrefN0
fc

fref
c

5. σs/σt = 2.5, nt = 0.2, Hc0/E0 = 0.33, β = 0, ne = 3, κc1 = 0.5, κc2 = 5, µ0 = 0.4,
µ∞ = 0

6. ft = f reft
fc

fref
c

is the estimated macroscopic tensile strength

State variables for vectorial equations

1: "Normal N stress" [stress]

2: "Shear M stress" [stress]

3: "Shear L stress" [stress]

4: "Normal N strain" [nondimensional]

5: "Shear M strain" [nondimensional]

6: "Shear L strain" [nondimensional]

7: "Max normal N strain" [nondimensional]

8: "Max shear T strain" [nondimensional]

9: "Tensile strength" [stress]

10: "Post-peak slope in tension" [stress]

11: "Shear L crack opening" [length]
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12: "Volumetric Strain" [nondimensional]

13: "Normal N crack opening" [length]

14: "Shear M crack opening" [length]

15: "Total crack opening" [length]

16: "Facet failure flag" [nondimensional]

17: "Dissipated energy density rate" [powerDensity]

18: "Dissipated energy density" [energyDensity]

19: "Dissipated energy density rate in tension" [powerDensity]

20: "Dissipated energy density in tension" [energyDensity]

5.9.6 RCI Rebar-Concrete Interaction Model

Material RCI RebarConcreteInteraction {

StaticParameters {

...

}

StrainRateEffects {

...

}

}

State variables for vectorial equations

1: "Axial stress" [stress]

2: "Radial stress" [stress]

3: "Circumf. stress" [stress]

4: "Axial slippage" [length]

5: "Radial slippage" [length]

6: "Circumf. slippage" [length]

7: "Max. axial slippage" [length]

5.9.7 LDPM Concrete-Fiber Interaction Model

This model is used exclusively for computing concrete-fiber interaction at the LDPM cell
factes. It should not be used with any of the finite element formulations.

Material CFI LdpmFiber Dev {

ElasticModulus 210000 MPa // ymf,

SpallingParameter 1500 MPa // sps,

FiberStrength 1172 MPa // sfu,

FiberStrengthDecay 0.0 // fsd,

SnubbingParameter 0.05 // fsn,

BondStrength 1.75 MPa // tau,

VolumeStiffnessRatio 0.0 // eta

DebondingFractureEnergy 0.1 N/m // gdm,

PullOutHardening 0.05 // poa
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CookGordonParameter 2.

SpallingParameter 150 MPa

}

State variables for vectorial equations

1: "Normal N force" [force]

2: "Shear M force" [force]

3: "Shear L force" [force]

4: "Normal N strain" [nondimensional]

5: "Shear M strain" [nondimensional]

6: "Shear L strain" [nondimensional]

7: "Short side slippage" [length]

8: "Long side slippage" [length]

9: "Max short side slippage" [length]

10: "Max long side slippage" [length]

11: "Spalling length" [length]

12: "Cook-Gordon crack opening" [length]

13: "Failure flag" [nondimensional]

14: "Dissipated energy" [energy]

15: "Normal crack opening" [length]

16: "Shear M crack opening" [length]

17: "Shear L crack opening" [length]

5.9.8 Simple Cap Concrete Material Model

Material PLST SimpleCap {

Description Simple concrete model

Density 2.0 g/cm3

YoungsModulus 4e6 psi

PoissonsRatio 0.3

BulkModulus 0.3

ShearModulus 0.3

// Fe = alpha + theta*I failure curve

Alpha 0.07

Theata 0.07

X0 3000 psi // initial cap location

W 0.07 // void ratio

// select one of the blocks below

// 1) epv = W epx( - D1 (X-X0) )

D1 0.001 // make sure it is givne in 1/stress

// 2) epv = W epx( - D2 (X-X0)^2 )

D2 0.001 // make sure it is given in 1/(stress)2

// 3) epv = W (I-X0) / (X1-X0)

X1 40e3 psi // lock-up
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}

5.9.9 K&C Concrete Material Model

The K&C material model was inserted in Mars in 2003 and it has not been updated
since. In its simplest input form, only three parameters are necessary to specify material
properties.

Material Concrete KcConcreteModel {

Density 2.0 g/cm3

PoissonsRatio 0.19

CompressiveStrength 6000 psi

}

All other parameters and curves are automatically generated. If the user wants to refine
material parameters to match specific data, the following addtional parameters can be
specified.

LoadCurve Curve1 {

// volumetric strain versus bulk modulus curve

. . .

}

LoadCurve Curve2 {

// pressure versus volumetric strain curve . . .

}

LoadCurve Curve3 {

// strain-rate enhancement curve

. . .

}

Material Concrete KcConcreteModel {

Density 2.0 g/cm3

PoissonsRatio 0.19

CompressiveStrength 6000 psi

TensileStrength 600 psi

BulkModCurve Curve1

PressureCurve Curve2

StrainRateEnhancement Curve3

OneInch 1. // [2]

}

The user can enter partial data, for example Curve1 but not Curve2 and Curve3. The
program will automatically generate data only for the missing data
[2] The parameter OneInch was used for telling the model the units used in the calcula-
tions. For example, if the calculation employs cm as length units, the value of OneInch
would be 2.54. This parameters should be no longer needed since all input values are
now entered with their dimensions.
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5.10 Functions / Macros

The Functions object makes it possible to write a script and perform operation on the
objects of the database. Variables in the database are accessed using the same convention
that is used to identify variable for time history plotting.

Function FNC1 {

. . .

}

exec FNC1 now

The Function can be also invoke by the Action scheduler.

Function ‘FunctionName’ {

. . .

}

ControlParameters {

. . .

ExecFunction ‘FunctionName’ AtTime 10. ms

ExecFunction ‘FunctionName’ AtStep 10000

ExecFunction ‘FunctionName’ Every 0.1 ms

ExecFunction ‘FunctionName’ IfTimeStepLessThan 0.0001 ms

}

Following are some examples of scripts that can be performed in a function. The first
script converts a flat plate into a cylindrical shell.

Function FNC1 {

silent // do not display message when executing function

int nnd

real cx

real cy

real cz

real dangle

dangle = 3.14159 / 24.

real angle

real cs

real sn

nnd = ndL-PLAT num

int i

do i = 1 $nnd [

cz = nd-PLAT $i cx

cy = nd-PLAT $i cy

angle = $cz * $dangle

print angle // debug printing

cs = cos angle
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sn = sin angle

cx = $cs * $cy

cy = $sn * $cy

cx = -1. * $cx

cy = -1. * $cy

print cx

print cy

nd-PLAT $i cx = $cx

nd-PLAT $i cy = $cy

nd-PLAT $i cz = $cz

]

}

exec FNC1 now

The second example moves nodes that are outside of a cylinder of radius R0 to the surface
of the cylinder.

Function TRIM {

int nnd

real cx

real cy

real tm

real rd

real R0

nnd = ndL-TPOL num

R0 = 27.75 / 2.

print nnd

int i

logical lg

do i = 1 $nnd [

cx = nd-TPOL $i cx

cy = nd-TPOL $i cy

tm = $cx * $cx

rd = $cy * $cy

rd = $rd + $tm

rd = sqrt rd

lg = $rd > $R0

if ( lg ) [

print rd

print R0

tm = $R0 / $rd

cx = $cx * $tm

cy = $cy * $tm

nd-TPOL $i cx = $cx

nd-TPOL $i cy = $cy
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]

]

}

exec TRIM now

// functions (observe spaces)

real x

real y

y = random // random number between 0 and 1

y = sin ( $x )

y = cos ( $x )

y = abs ( $x )

y = sqrt ( $x )

The third example checks the maximum Von Mises stress in a list of hexahedral elements
every microsecond. When the max Von Mises stress exceed and ultimate material stress
Ftu, the calculation stops and the code is instructed to print various information.

Function F1 {

silent

real Ftu

real syP

real Mx

logical lg

Ftu = 67000.

syP = hxL-Pin MaxVonMisesStress

lg = $syP > $Ftu

if ( lg ) [

Mx = RB-X2 mx

echo ---------------------------------------------

echo Final results

print su

print Ftu

echo Mx: moment at failure

print Mx

echo ---------------------------------------------

QUIT

]

}

ControlParameters {

ExecFunction F1 every 0.001 ms

}

The output at the end of the run looks like this

---------------------------------------------
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Final results

Ftu = 67000

Mx: moment at failure

Mx = -1.78388e+06

---------------------------------------------

5.11 Pre-Set Test Simulations

This is a collection of objects for performing simulations of simple tests, such as concrete
biaxial, triaxial, or Colorado tests.

5.11.1 Biaxial Test

This object is designed to faciliate the simulation of biaxial tests. The specimen must be
a parallelepipedal prism aligned with the global reference system. In biaxial tests, the
ratio of the forces applied to the faces in two orthogonal directions is kept constant. In
our model, we require that the faces with applied loads are oriented perpendicular to the
x- and z- directions. The negative z-face nodes are fixed in the z-direction. The negative
x-face nodes are fixed in the x-direction. To avoid instabilties during fracturing, the load
is applied as ‘partially displacement driven’. In other words, the nodes of the positive z
face are moved at a prescrived velocity history and remain on a flat surface. The total
reactive force in the z-direction is then computed. This makes it possible to determine
the force in the x-direction. This force is applied to all the nodes of the positive x-face
which are forced to move at the same x-velocity using a kinematic constraint.

// Model restrictions:

// 1) Specimen must be a cube or a prism

// 2) Displacements imposed on plates perpend. to z-axis

// 3) Ratioed forces imposed on plates perpend. to x-axis

Test ‘TestName’ Biaxial {

// enter either TetSolidList or HexSolidList

TetSolidList ‘Specimen’ // specimen list

HexSolidList ‘Specimen’ // specimen list

VelocityHistory ‘History’

// enter either StressRatio or ForceRatio

StressRatio 0.5 // lateral over vertical

ForceRatio 0.5 // lateral over vertical

}

TimeHistoryList HIST {

teL-‘TestName’ VerticalStress

teL-‘TestName’ VerticalStrain

teL-‘TestName’ HorizontalStress

teL-‘TestName’ HorizontalStrain

}
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Note that this object imposes the velocities on the positive z-face and you would get an
error if you are also imposing the same conditions using a ‘PrescribedVelocityList. The
difference between StressRatio and ForceRatio depends on the surface areas of the x- and
z- faces.

5.11.2 Triaxial Test

// Model restrictions:

// 1) Specimen must be a cube or a prism

// 2) Displacements imposed on plates perpend. to z-axis

// 3) Ratioes forces imposed on plates perpend. to x- and y-axis

Test ‘TestName’ Triaxial {

TetSolidList ‘Specimen’ // specimen list

VelocityHistory ‘History’

XStressRatio 0.5 // lateral over vertical

YStressRatio 0.5 // lateral over vertical

}

TimeHistoryList HIST {

teL-‘TestName’ VerticalStress

teL-‘TestName’ VerticalStrain

teL-‘TestName’ XHorizontalStress

teL-‘TestName’ XHorizontalStrain

teL-‘TestName’ YHorizontalStress

teL-‘TestName’ YHorizontalStrain

}

5.11.3 Colorado Test

ReferenceSystem RSYS cartesian {

// Model restrictions:

// 1) The geometry is a 4-inch side cube

// 2) The center of the cube is at the origin

}

Test BXCT Colorado {

TetSolidList CUBE

X-PressureHistory PTHX

Y-PressureHistory PTHY

Z-PressureHistory PTHZ

}
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6 Nodes and Particle Lists

6.1 Node Lists

In MARS, nodes and spherical particles are used interchangably. The same class (in the
OOL sense) is used for both entitites. A typical input block for specifying a node-list is
shown below:

NodeList ‘ListName’ {

Read filename // read nodelist command from file

// if this list is used to define a rigid body, enter

Density 7.8 g/cm3

// if this is a DP tet list, enter

Particles

Color Red

LengthUnits cm

VelocityUnits cm/s // if velocities are entered

InputFormat IXYZR // index, cx, cy, cz, and rd

// available input formats below (B boundary code, UVW velocities)

// IXYZ IBXYZB IXYZR XYZ IXYZRUVW

// Boundary condition code: XOO = fix cx, free cy and cz

ReadNodes 345

// if InputFormat = IXYZR then

// i cx cy cz rd

1 1.4 2.4 -4.5 0.12

2 1.8 2.1 -4.2 0.17

. . .

// else if InputFormat = IBXYZB then

// i trn cx cy cz rot

1 OOX 1.4 2.4 -4.5 OOO

2 XXX 1.8 2.1 -4.2 OOO

. . .

Select ... // select nodes from list, see below

Set ... // set values on selected nodes, see below

SetInitialImperfections 0.01 mm // [1]

Scale 0.4 // scale all cords by 0.4

X-Scale 0.4 // scale in x-direction only

Y-Translate 0.4 in

Z-Rotate 45 // rotate sel nodes 45 deg about z-axis

Move 0.3 in 0.5 in 0.3 in

StructuralDamping 0.001 1/s // to be implemented

PlotAttributes { ... } // see below

ComputePackingRatio ‘lengthUnits’ ‘xmn’ ‘xmx’ ‘ymn’ ‘ymx’ ‘zmn’ ‘zmx’

// extract a node subset

Extract Dogbone { . . . }
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Make NodeList SubListName

Write NodeDataFile PartNodes.mrs

CoordinateOutputFormat %10.6f

}

[1] The SetInitialImperfections is used to introduce small imperfections in the mesh
by moving the nodes randomly in the three directions using the formula

crd new = crd original + imperfection * (random - 0.5),

where imperfection is the value following the keyword, in the case above that value is
0.01 mm, and random is a randomly generated number ranging between 0. and 1. The
imperfections are not applied to the degrees of freedom that have been constrainded.
For this reason, it should be applied at the very end. Note, that you can set temporary
boundary conditions on the translation, if you want to control the direction(s) in which
imperfections are applied.

6.1.1 Select Commands

Select commands make it possible to select a subset of nodes using various criteria. The
selection can be immediately used for imposing conditions or saved with a name for later
processing.

Select [criteron]

AlsoSelect [criteron]

Unselect [criteron]

Reselect [criteron]

InvertSelection // invert current node selection

SaveSelection ‘selection name’

// [criterion] can take the following forms

// all // all nodes

// node 25 // node 25

// nodes 1 5 // node 1 through 5

// nodes 1 100 2 // nodw 1 through 100 step 2

// cx < 0.4 in // nodes with cx < 0.4

// cy = 0.4 cm // nodes with cy apprx = 0.4

// tb = OOX // nodes with translational BC = OOX

// rb = XXX // nodes with rotational BC = XXX

// vz > 10 m/s // nodes with z-velocity > 10

// cl 0. 10. 4. cm // node closest to point (0.,10.,4.)

// Examples:

Select nodes 1 100 // select nodes 1 through 100

AlsoSelect nodes 201 300 // add nodes 201 - 300

Reselect cx < 0. in // select nodes with negative x

// from nodes already selected

Nodes can also be selected from within element lists. Following are a few examples. The
first example shows how to select nodes that belong to a set of faces which point in the
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positive x-direction. These could be all the nodes of a circular face of a cylinder aligned
with the x-axis.

TriangFaceList ‘ListName’ {

. . .

EditNodeList {

Unselect all

}

Select FacesWithDotProduct 1. 0. 0. > 0.99

SelectNodes

EditNodeList {

Set Translations XXX

Select all

}

}

Most element lists provide the following commands: ‘SelectNodes’, ‘UnselectNodes’, and
‘ReselectNodes’. The second example shows the difference between ‘SelectNodes’ and
‘ReselectNodes’; in the example, we want to select nodes that are shared by two element
lists and save them in a new node list (Refer to ‘other commands’).

NodeList Nodes {

Unselect all

}

TriangShellList Shells {

SelectNodes

}

HexSolidList Solids {

ReselectNodes

}

NodeList Nodes {

Make NodeList CommonNodes

}

For the nodes to be selected, they have to be used in both element lists (intersection of
the two sets). If we had used ‘SelectNodes’, in the HexSolidList, then the selected nodes
would include all nodes from both lists (union of the two sets).

6.1.2 Set Commands

The ‘Set’ command is used to set variables or boundary conditions on a set of nodes that
was previously selected using the ‘Select’ commands. If no selection was previously done,
then the ‘Set’ command will operate on all nodes.

NodeList ‘ListName’ {

. . .
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Set TranslationsBC XXX

Set RotationsBC XXX

Set X-Velocity 100 in/s

Set Y-Rotation 100 1/s

Set Radius 0.3 in

}

6.1.3 Scale Commands

Scale commands make it possible change node coordinates and particle radii by multi-
plying them by a constant factor. For example, the command

Scale 1.4

multiplies x-, y-, z-coordinates and radii of all selected nodes by the value 1.4. If different
scaling factors are desired in different directions, these commands may be used:

X-Scale 1.2

Y-Scale 1.4

Z-Scale 1.1

R-Scale 0.9 // scale particle radii by 0.9

6.1.4 Translate/Rotate Commands

Translate/Rotate commands are used to move and reorient a set of nodes. These com-
mands are executed during the reading phase, in the order in which they appear. This
is important, because a rotation after a translation gives different results than the same
translation after the same rotation

X-Translate 3 cm

Z-Rotate 90 deg

A mesh can be simultaneoulsy translated in all three direction using the ‘Move’ command:

Move 3 cm 0. cm 5 cm

A special case of the translate command is the ‘Align’ command:

X-Align Min // { Min / Max / Center }

In this case, the code computes the mininum x-coordinate and shifts the mesh in the x
direction so that the minimum coordinate becomes 0. Also available are ’Y-Align’ and
’Z-Align’. If ‘Max’ is used instead of ‘Min’, then the mesh is aligned so that the maximum
x-coordinate is 0. If ‘Center’ is used, the mesh is centered around the 0. x-value.
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6.1.5 Other Commands

The ‘Make NodeList’ command is designed to create a new node list that contains refer-
ences to the nodes selected in the current list. The new list is ‘passive’, in other words,
the list does not ‘own’ the nodes and does not perform any active operation on them,
such as integrating the equation of motion. However, the node selection can be used for
many purposes:

1. the nodes can be used in time histories.

2. the nodes can be used to set boundary conditions.

6.1.6 Time History Commands

The following line commands are intended to be used inside Time History lists to produce
records of global and element variables.

TimeHistoryList HIST {

. . .

ndL-NODS ke

nd-NODS 155 vx

nd-NODS cl 0.1 in 0.5 in 0.4 in vx

// list labels for available quantities

// (in parenthesis, value for entire list: CG = values at CG,

I = volume integral)

// cx: x coordinate (CG)

// cy: y coordinate (CG)

// cz: z coordinate (CG)

// vx: x velocity (CG)

// vy: y velocity (CG)

// vz: z velocity (CG)

// fx: x force (I)

// fy: y force (I)

// fz: z force (I)

// mx: x moment (I)

// my: x moment (I)

// mz: x moment (I)

// wx: x rotation rate (CG)

// wy: x rotation rate (CG)

// wz: x rotation rate (CG)

// vl: absolute velocity (CG)

// ke: kinetic energy (I)

// px: x momentum (I)

// py: y momentum (I)

// pz: z momentum (I)

// ax: x angular momentum (I)
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// ay: y angular momentum (I)

// az: z angular momentum (I)

}

6.1.7 Plot List Commands

It is possible to generate plot files for Quasar and Paraview of various node variables.
The input commands for the two post-processors are quite different. The main difference
is that for Quasar files you have to preselect the information you want to plot but it can
be combined with other lists. For Paraview, most of the nodal information is written to
the file and the appearance for the plot is chosen during post-processing. Although it is
still possible to set plot attributes for Quasar plots within a NodeList section, this is no
longer recommended. Quasar plot attributes should be entered in the PlotList section.

PlotList PLOT {

TimeInternval 0.1 ms

ndL ‘NodeListName’ {

// 1. Select resolution [optional, default = Low]

HighResolution

MediumResolution

LowResolution

// 2. Set or change node/particle radii [optional]

scl 0.5 // scale particle size by 0.5

MinRadius 0.5 in

// 3. Select contour variable [optional]

var vx // plot fringe plots of x-velocity

vmn 0. // bottom value for fringe plots [1]

vmx 100. // top value for fringe plots [1]

// 4. Change displacement scale [optional]

DisplacementScalingFactor 1000. // <dsf 1000.>

}

}

[1] The minimum and maximum values for the range are not required. For each plot,
MARS computes the minimum and maximum of the quantity to be plotted. Either one
or both are overwritten if the min and/or max are specified in the input. By fixing the
range, it is possible to make animation movies where the colors are consistent across
frames.

Plotting command for Paraview files are simpler. First, recall that it is preferable to
have one list per plot file. Second, all other parameters except DisplacementScalingFactor
are controlled within Paraview

PlotList ‘PlotListName’ {

Paraview

TimeInterval 0.1 ms

ndL ‘NodeListName’ { }

}
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Velocity and rotation vectors of selected nodes/particles are automatically saved in Par-
aview files. The Paraview procedure for displaying particles and velocity (or rotation
rate) vectors as arrows is described below:

Main Menu: [File]->[Open] Select files Particles.00*

Pipeline Browser: Click on Particles.00*

Object Inspector: (Properties) (Apply)

-- Display particles as gray spheres

Main Menu: [Filters]->[Recent]->[Gliph]

Object Inspector:

In Properties:

Glyph Type: Sphere

Scale Mode: scalar

Set Scale Factor: check Edit box and enter 0.5

Radius: 1.

Maximum Number of Points: enter number greater than

num. of particles

Click (Apply) button

In Display:

Color by: Solid Color

Change color if necessary

-- Display velocity/rotation vectors as colored arrows

Pipeline Browser: Click on Particles.00*

Main Menu: [Filters]->[Recent]->[Gliph]

Object Inspector:

In Properties:

Vectors: Velocities [or RotationRates]

Glyph Type: Arrows

Scale Mode: vector

Set Scale Factor: change if necessary

Maximum Number of Points: enter number greater than num. of particles

Click (Apply) button

In Display:

Color by: Velocities Magnitude

Press (Edit Color Map ...)

(Choose Preset) select one of the preset color scales

Of course, it is possible to paint particles according to a number of scalar quantities, such
as vx, vy, vz, |v|, wx, wy, wz, |w|, etc.

Main Menu: [File]->[Open] Select files Particles.00*

Pipeline Browser: Click on Particles.00*

Object Inspector: (Properties) (Apply)

-- Display particles as painted spheres

Main Menu: [Filters]->[Recent]->[Gliph]
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Object Inspector:

In Properties:

Glyph Type: Sphere

Scale Mode: scalar

Set Scale Factor: check Edit box and enter 1.

Radius: 1.

Maximum Number of Points: enter number greater than num. of particles

Click (Apply) button

In Display:

Color by: choose one of the variables

Click (Edit Color Map) button

Click (Choose Preset) button in color scale editor window

Choose one of the color sheme and press the (OK) button

The following example shows the commands for generating a Paraview file which contains
the exploded view of a particle list depicting the domain decomposition. The parameter
1.3 controls the amount of radial motion for the domains. The coordinates of the center of
gravity of each domain are multiplied by this parameter. A value of 1. means all particles
stay where they are. The larger the value of this parameter, the more ‘exploded’ the view
looks. Results are in file DomainDecomposition.000.vtu. The domains may be painted
using the scalar variable ‘Domains’.

PlotList DomainDecomposition {

Paraview

TimeInterval 100. s

ndL Particles {

DomainDecomposition 1.3

}

}

6.1.8 Nodal Rotations

For all finite element and discrete particle formulation in MARS is currently sufficient to
keep track of rotation rates. Actual rotations, the change in orientation of the nodes or
particles, are not used because most formulations employ an incremental approach for
computing stresses and forces. There are situations where an analyst needs to process
node-particle rotations. To satisfy this requirement, we have inserted in MARS the
capability of keeping track of particle rotations, by introducing a new class (NodeQ)
derived from class Node and class Quaternion. Class Node is used to instantiate all nodes
and particles for most models. Class Quaternion implements quaternions, a mathematical
construct which can be viewed as an extension of complex numbers. Quaternions are
used to describe rotations in space employing only four scalars. A node list can be forced
to use the NodeQ class rather than the default Node class by entering the keyword
ComputeRotations in a stand-alone line

NodeList Particles {
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. . .

ComputeRotations

. . .

}

At this time, node rotations can only be viewed using Paraview. It is sufficient to enter
a PlotList section in the input file using the following commands

PlotList Particles Paraview {

TimeInterval 0.2 ns

ndL Particles { }

}

Node rotations are automatically saved to the output plot-file along with coordinates,
velocities, and rotation rates.

The new NodeQ class was tested on a simple benchmark problem consisting of a simple
supported beam loaded with a uniform load perpendicular to the beam. The beam was
modeled using a strip of quadrilateral shell elements. Vibrations were dampened until
the steady state solution was obtained. The final rotation of the beam are visualized in
Paraview using the steps described below

Load particle file ... [Apply]

(Main Menu) Filters -> Recent -> Gliph

- Set Gliph parameters in the [Properties] tab

Scalars: Rotations

Vectors: RotatiionVectors

GlyphType: Arrow

Set Scale Factor: set to appropriate value by trial and error [X] Edit

- Change color convention in the [Display] tab

(Edit Color Map ...) -> (Choose Preset)

Choose Red-Yellow-Green-Blue bar

If you want to show the particles as well, you must re-enter

Load particle file ... [Apply]

(Main Menu) Filters -> Recent -> Gliph

- Set Gliph parameters in the [Properties] tab

Scalars: Rotations

Vectos: RotationVectors

GlyphType: Sphere

Set node radii or scale particle radii as necessary

- Change color convention in the [Display] tab

(Edit Color Map ...) -> (Choose Preset)

Choose Red-Yellow-Green-Blue bar
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6.1.9 Extract Commands

Extract Dogbone {

Cyl // or Flat

MinRad 6 cm // throat

MaxRad 8 cm // base

TotalLength 10 cm

ThroatLenth 6 cm

}

6.1.10 Insert Commands

Insert LenticularFlaw {

Center 5.6 nm 56. nm 64 nm

X-Axis 1.3 4.5 2.4

Y-Axis 3.4 6.7 8.4

[ Thickness 5 nm ]

X-Length 50 nm

Y-Length 20 nm

Plot

}

Insert Particles {

Box { 10 cm 10 cm 5 cm } GaussianRadiusDist { }

Seed 345

// either Number or UntilFull

Number 200

UntilFull

}

6.1.11 Discrete Element Commands

Read DEM Particle File generated using John Peter’s code

ControlParameters {

Units Nano

}

NodeList Particles {

Particles

Density 2. g/cm3

LengthUnits nm

ReadDemParticleFile Problem3_RS_Final.pts

}

6.2 MacroParticle Lists

Macroparticles are assemblies of 3 or more spherical particles tied together either using
rigid constraints or spring and dampers. ...
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MacroParticleList ‘ListName’ ‘Type’ {

// for available ‘Types’ see below

Density 2.0 g/cm3

// 1. Enter type dependent parameters (see below)

Parameters { ... }

// 2.a Generate one of the listed distributions

Generate {

Prism {

X-first 0. in X-inc 2. in X-rows 10

Y-first 0. in Y-inc 2. in Y-rows 10

Z-first 0. in Z-inc 2. in Z-rows 10

}

Cylinder {

Center 0. in 0. in 0. in

Radius 4. in

Length 8. in

}

Sector {

// x>0 y>0 0<z<L r<R

Radius 4. in

Length 8. in

}

}

// 2.b Read spheres from node list

NodeList ‘ListName’

InsertNodeList [‘ListName’] {

. . .

}

// Optional commands

RandomRotations // (Opt.)

Set vz -100 m/s // (Opt.)

ReadPlotFile ‘filename’

}

6.2.1 Flex 4-Sphere MacroParticle

MacroParticleList ‘ListName’ Flex4SphereParticle {

. . .

Parameters {

SphereRadius

TetRadius

Stiffness

Mom

Vis

}
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}

6.2.2 Rigid 4-Sphere MacroParticle

Each macroparticle consists of an assembly of four spherical particles placed at the ver-
tices of a tetrahedron and rigidly tied together

MacroParticleList ‘ListName’ Rigid4SphereParticle {

. . .

Parameters {

SphereRadius

TetRadius

}

}

6.2.3 Rigid 3-Sphere MacroParticle

Each macroparticle consists of an assembly of three spherical particles placed at the
vertices of a triangle and rigidly tied together

MacroParticleList ‘ListName’ Rigid3SphereParticle {

. . .

Parameters {

SphereRadius 3. mm

TetRadius 2. mm

}

}

7 Edge/Truss/Beam Elements

7.1 Edge List

Edge lists are collections of ‘edge’ type objects. In its simplest geometric form, an edge is a
line segment spatially defined by two nodes. MARS implements edges in an ‘Edge’ class.
Several structural entities can be derived from the edge class: trusses, rebars, beams,
links, etc. Edge lists can be created internally from other lists or input explicitly. When
created from other lists, they are typically used in conjunction with more complex meshes
consisting of triangular and quadrilateral faces or tet and hex solids. Input commands
for defining new lists explicitly via input are given below. below.

EdgeList ‘EdgeListName’ ‘type’ {

// where ‘type’ can be one of the following

// Geometry

// Truss

// Rebar
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// with no specifier defaults to Geometry

// ** 1. ** Specify node list

NodeList ‘NodeListName’

// or

InsertNodeList ‘NodeListName’ { . . . }

// ** 2. ** Read or generate edges

ReadObjects 345

// i n1 n2

1 124 243

2 56 238

. . .

// else

Generate {

// see below for generation options

}

// ** 3. ** Change attributes (optional)

Color Green

Radius 0.4 mm // [1]

Diameter 0.8 mm // [1]

Density 7.8 g/cm3 // [2]

PlotAttributes {

Cylinders

}

// ** 4. ** Other optional commands

EditNodeList { . . . }

Make EdgeList ‘SubListName’ // sublist of selected edges

Make NodeList ‘SubListName’ // nodes attached to selected edges

// select, unselect, alsoselect commands see below

// writing and reading external files

Write PartMeshDataFile PART.mrs // [3]

Read PART.mrs // [3]

}

[1] The radius or diameter are used for three main purposes: a) plot edges as three-
dimensional cylinders, b) provide a radius for edge-edge contacts, c) compute masses for
rigid body applications.
[2] Density is used for computing nodal masses when an edge list is used in the definition
of a rigid body.
[3] The Write PartMeshDataFile command creates an ASCII file with node and edge
information with this format:

// commented title line

InsertNodeList ‘listName’ {

LengthUnits in

ReadNodes 235
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. . . // nodal coordinates

}

ReadObjects 211

. . . // edge indeces

EOF

The mesh data can be used as input to other files using the Read PART.mrs command
When generated from other lists, it is possible to change some list attributes, like

color, as shown in this example:

QuadFaceList ‘ListName’ {

. . .

Make EdgeList ‘EdgeListName’ SharpEdges

}

EdgeList ‘EdgeListName’ {

Color Red

}

7.1.1 Generate commands

The generate commands are shared with beam lists. Multiple parts or lines can be
generated within the same block of instructions:

Generate {

StraightLine { ... }

StraightLine { ... }

Helicoid { ... }

}

The overlapping nodes from these diferenct parts can be merged using the MergeNodes
command.

Straight Line

StraightLine {

LengthUnits cm

FirstPoint 0.0 0.0 0.

LastPoint 20. 0.0 0.

// you can also enter first and last node provided you entered a node list

FirstNode 1

LastNode 2

NumberOfSegments 10

}

BeamList RBRS {

sec o m STEL #3
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Generate {

Rebars {

ReferenceSystem RSYS

// rebars are aligned in RSYS-X direction

LengthUnits cm // required

Translate 0. 0. 5. // in global RefSys, optional

RebarLength 10.

MaxElementSize 2.

NumberOfRebars 6 // optional, dfl = 1

RebarSpacing 4. // in local Y direction

}

}

}

EdgeList RBRS Rebar {

Material Steel

Size #3

Generate {

Rebars {

ReferenceSystem Local

// rebars are aligned in Local-X direction

LengthUnits cm // required

Translate 0. 0. 5. // in global RefSys, optional

RebarLength 10.

MaxElementSize 2.

NumberOfRebars 6 // optional, dfl = 1

RebarSpacing 4. // in local Y direction

}

BentRebars {

ReferenceSystem Local2

LengthUnits in

MaxElementSize 1.

Translate 0. 0. 5. //

Point 0. 12. -35 // 1st point

Point 0. 15. -35 // 2nd point

Point 0. 15. -30 // 3rd point

[ CloseCurve ]

Duplicate 5 @ 10.

}

}

}

Parallel fibers

This scheme generates a system of straight parallel fibers aligned in the z-direction. The
whole system is centered at the origin but can be later translated and reoriented. The
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fibers are equally spaced in the x- and y-direction. The pitch as well as the number of
fibers in the x- and y-directions are independently defined. The number of fibers in each
direction should be an odd number so that there are an equal number of fibers before
and after the middle fiber, the fiber that crosses the origin. The input commands are
given below

EdgeList ‘ListName’ Geometry {

Generate {

ParallelFibers {

Length 2. in

X-Pitch 0.25 in

X-Fibers 51

Y-Pitch 0.25 in

Y-Fibers 51

}

}

}

The fibers can be translated and reoriented in any direction using the move and rotation
commands for node coordinates. For example, if the fibers need to be aligned with the
y-direction, we need to rotate all nodes by 90 degree around the x-axis. Tthe sequence
of transformations (rotations and translations) matters as they are done in a sequential
order.

EdgeList ‘ListName’ Geometry {

Generate {

ParallelFibers {

. . .

}

EditNodeList {

X-Rotate 90 deg

Move 0. in 0. in 1. in

}

}

}

When the system of parallel fibers is embedded in a LDPM solid, the portions of fiber
sticking out of the solid can be chopped.

Parallele wires

This features was inserted for generating models of cable used in suspension bridges

BeamList CABL {

sec o m STEL r 0.1

Ref CABL
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Generate {

generate a bundle of wires inside a 10 in circle

Bundle L 12. l 1. d 0.2 R 10. o S CYLN

}

}

Helicoidal wire

BeamList HLCD {

sec o m STEL r 0.1

Ref CYLN

Generate {

Helicoid R 10. L 0.2 n 60. L 10 S CYLN q

}

}

Random fibers

EdgeList FBRS Truss {

Generate {

RandomFibers {

Volume -6 in 6 in -6 in 6 in -0.25 in 0.25 in

Length 5 cm

ElementSize 1 cm

Seed 134

// increase Bending to make fibers more contorted

Bending 0.9

NumberOfFibers 2000

}

}

}

Twisted Cable

This generation scheme generates straight segments of twisted cable. The input param-
eters are shown below. The best way to test this generation scheme is to start from
the input below, ake changes to the input and visually display the resulting mesh. In a
twisted cable, individual wires are kept from crossing each other using the edge-edge con-
tact algorithm. The node-edge contact algorithm may be sufficient for some simulations,
saving time but being potentially unreliable.

BeamList CABL {

sec o m STEL r 0.1 in

Generate {

TwistedCable {

Strands 7 // 1, 7, or 19
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WiresPerStrand 7 // 1, 7, or 19

WireRadius 0.1 in

CableLength 100. in

ElementLength 2. in

WireRotationPitch 10.

StrandRotationPitch 20.

}

}

}

7.1.2 Select commands

The edge select commands make is possible to select a subset of edges using various
criteria. The selection can be saved in a separate list using the MakeList command or
used on a temporary basis. The standard Select commands are available:

Select [criterion]

AlsoSelect [criterion]

Unselect [criterion]

Reselect [criterion]

InvertSelection

Selection criteria, criterion, can take any of the the following forms

all // all elements

do 25 // element 25

do 1 5 // elements 1 through 5

do 1 100 2 // elements 1 through 100 step 2

dp 0. 0. 1. > 0.4 // elemenst such that dot product with

// vector 0,0,1 is greater than 0.4

1n // elements with at least one node selected

2n // elements with both nodes selected

Example:

Select do 1 100 // select element 1 through 100

AlsoSelect do 201 300 // add elements 201 - 300

In addition, three separated commands ara available to select, unselect, or reselect
nodes which are used in the definitions of the selected edges in the list: SelectNodes,
UnselectNodes, and ReselectNodes. For example, the commands below are used to
select the nodes of the first forty edge elements in the list.

EdgeList ‘listName’ Geometry {

. . .

Select do 1 40

SelectNodes

}

These commands are also applied to all other types of lists which are derived from the
edge list.

75



7.1.3 Make commands

The Make EdgeList command is used for generating a sub-list of edges which have been
previously selected. The new list is of the ‘Geometric’ type; in other word, MARS will
not perform any operation on it (e.g. computer internal forces).

The Make NodeList command is used for generating a sub-list of nodes which are
used for defining the edges in the current edge list.

7.1.4 Notes

Currently, beam elements, although derived from the ‘Edge’ class, are treated in a sepa-
rate list called ‘BeamList’. This may change in future versions of MARS. MARS.

The command ‘Write PartMeshDataFile’ and ‘ReadFile’ can be used to transfer mesh
details to a separate file and clean up the main input file. For example, we may import
a truss edge mesh generated using a processor code and convert it to MARS; in the
conversion run, the edge list can be saved using the command

Write PartMeshDataFile PART.mrs

In the main input file, the edge data can be loaded using the commands commands

EdgeList ‘ListName’ ‘type’ {

Read PART.mrs

}

Note that the mesh part file includes the edge definition as well as the node data. Sections
1. and 2. of the edge list input should not be present in the main input file. file.

7.1.5 Linear Elastic Beams - Uniform Cross Section

This list consists of a collection of linear elastic beams with uniform cross section. The
beam formulation is based on the Euler-Bernoulli beam theory. A beam element is
defined using two nodes. Each beam element has a corotational local reference system
XYZ. The X direction is aligned with the beam axis from node 1 to node 2. The second Y
direction is perpendicular to X and is initialized at time zero using a ReferenceSystem

object previously defined. The section properties are defined in the local Y-Z plane
perpendicular to the beam axis. The sections properties consists of the following data:

• cross section area A,

• moment of inertia about the Y-axis IY,

• moment of inertia about the Z-axis IZ, and

• torsion constant J.
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The torsion constant of the section is not to be confused with the polar moment of inertia.
The two are identical for round shafts and concentric tubes only. For other shapes J must
be determined by other means. The section properties are internally calculated for a few
common cross sections (see sample input listing below) or explicitely entered.

EdgeList ‘listName’ LinearBeam {

Material ‘materialName’

// Select one of the available cross sections

RectangularCS { by 3. in bz 0.5 in }

CircularCS { Ro 5.125 in Ri 4.875 in }

// or specify cross section properties explicitely

CrossSection { A 4in2 IX 5.33 in4 IY 0.33 in4 J 5.1 in4 }

// Read mesh

NodeList ‘nodeListName’

ReadObjects 1

//j j1 j2

1 1 2

// or generate mesh internally

Generate {

// see generate commands for EdgeList

}

}

7.1.6 Linear Elastic Beams - Non-Uniform Cross Section

This list is essentially an extension of the previous list. The only difference is that, as
the name implies, the cross section properties may vary from beam to beam. Thus, the
input line for each beam must include the definition of the section properties explicitely,
as shown in the example below. below.

EdgeList ‘listName’ LinearBeamNonUniformCS {

NodeList ‘nodeListName’

Material ‘materialName’

ReferenceSystem ‘refSysName’

ReadObjects 10

// j n1 n2 other data

1 1 2 L in Y 0. 1. 0. A 2.17 IY 1.8 IZ 1.8 J 3.601

2 2 3 L cm n3 9 A 3.763 IY 2.813 IZ 2.813 J 5.626

3 3 4 Rect { bY 2.125 in bZ 1.5 in }

4 4 5 Rect { b 2.125 in }

5 6 6 Circ { Ro 4 in }

6 6 7 Circ { Ro 4 in Ri 3.5 in }

7 7 8 I { wf 2. in tf .2 in hw 2. in tw 0.1 in }

. . .

}
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For the first beam, the cross section properties are entered explicitely. In this case, it is
mandatory to enter the length units, L in. The local Y-direction is entered specifying a
vector V using the command( Y 0. 1. 0 ). The vector V does not need to be unitary
or perpendicular to X. The local reference system is computed using these operations: Z
= X x V, and Y = Z x X, where ’x’ is the vector outer product.

For the second beam, the Y-direction is specified using a third node n3. In this case,
the Y-direction is oriented from the projection point of n3 on the beam toward node n3

itself.
For the third beam, the cross section is rectangular with 2.125 in in the local Y-

directions and 1.5 in in the Z-direction. Square cross sections can be also specified as in
the fourth beam.

For the fifth beam, the cross section is a solid cylindrical rod with radius 4. in.
Annular cross sections can be specified as in the sixth beam.

7.1.7 Plotting options

The plotting options are used for choosing three dimensional rendering shapes in Quasar.
Note that special shapes can be done in Paraview using gliphs objects. These shapes
are available, Cylinders, HiResCylinders, and Pills. Any one of these shapes can be
specified in this fashion,

EdgeList ‘listName’ Geometry {

. . .

PlotAttributes {

// Select only one

Cylinders

HiResCylinders

Pills

}

}

The Pills option is used to render each segment in the shape of a pill, that is a
cylindrical portion with two hemispherical caps. The diameter of the ‘pill’ is entered
using the Radius command in the regular section of the input.

When Cylinders or HiResCylinders is used in Paraview, the data is written in a
special format so that the rendering is done in Paraview using glyphs. These are the
steps in Paraview for rendering the data:

1. Open plot files corresponding to edge list

2. Press ‘Apply’ button (nothing shows up)

3. Select ‘Filters’ - ‘Common’ - ‘Glyph’ from main menu

4. Set ‘GlyphType’ to ‘Cylinder’

5. Set ‘Resolution’ value to 30 or higher

6. Set ‘Radius’ value to desired value

7. Leave ‘Capping’ checked

8. Set the ‘Glyph Transform’ ‘Rotate’ value to (0, 0, 90)
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9. Set ‘Scale Mode’ to ‘scalar’

10. Check ‘Edit’ and set ‘Set Scale Factor’ to 1. or slightly higher

11. Press ‘Apply’ button (the cylinders should show up)

12. In the Display tab, change ‘Color by’ to ‘Solid Color’

Step 8 is necessary to have the cylinder aligned with the direction of the edge. This may
be corrected in newer versions of Paraview and this step may no longer be necessary.

Steps 9 and 10 are intended to scale the height of the cylinder to the length of the
edges. If the edges form a curved line, it is necessary to use a value greater than 1. to
avoid gaps on the convex side of the line.

7.2 Beam Lists

The BeamList is used to define a set of beam elements with constant cross section. The
formulation is similar to the QPH shell element, in the sense that the centerline of a beam
element remains straight. Shear deformations are controlled by the rotation rates of the
two nodes that define a beam. The beam formulation has a modular interface with
the CrossSection object. This makes it possible to define many types of cross-section
integration schemes and easily add new ones.

BeamList Rebars {

// 1) RefSys is used to set beam 2nd direction

ReferenceSystem ‘RefSysName’ // {1}

// 2) select one of the cross section types

sec o { } // solid cylindrical cross-section

sec O { } // tubular cross section

set h { } // hat section

sec R { } // rebar section (similar to ’o’ section)

sec Z { } // Z section

sec c { } // custom section

// 3.1) specify mesh explicitely

NodeList Nodes

ReadObjects 345 // number of elements

// i n1 n2

1 124 243

2 56 238

. . .

// 3.2) else generate mesh

generate {

// see below for mesh generation options

}

// 3.3) else read mesh from external file

ReadFile ‘filename’ // optional

Read PART.mrs

// 4) specify plot attributes
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Color Rust

// 5) writing and reading external files

Write PartMeshDataFile PART.mrs

// 6) specify prestress loads [2]

Prestress 50000. psi

}

[1] The selection of the reference system is very important specially for cross sections that
are not axi-symmetric. The provided reference system is used for setting up the local
co-rotational reference system for each beam element during the initialization phase.
The local x-axis is oriented in the direction of N1 to N2 where N1 and N2 are the two
nodes defining the beam element. The specified reference system returns a preferential
direction at each point in space [see section describing reference systems]. During beam
initialization, the preferential direction U is computed at the beam midpoint. This makes
it possible to compute the Z direction of the local z-axis as a outer product Z = X x U.
The Y direction is then computed as Y = Z x X. The best way to check that all beam
have been initialized properly is to plot them.

[2] The Prestress command makes it possible to recreate the stress state in rebars
and concrete typical of reinfored concrete beams. For this command to work properly,
the rebar beams must be embedded in a concrete matrix. Rebar beam elements and
solid concrete elements (LDPM tets, hex, etc) interact with each other using some form
of constraint (master-slave, penalty, rebar-concrete interaction constraints, etc.) Rebar
prestress is accomplished by specifying a tensile stress. The beam integration points over
the cross section are initialized to the specified stress. It is necessary to use dynamic
relaxation for the system to become equilibrated. In this process, the prestressed rebars
will put the concrete into compression. This is similar to what happens in a reinforced
concrete beam when the prestressed loads on the rebars are removed after the concrete
has cured.

7.2.1 Time History Commands

Currently, it is possible to save the total axial force in a single beam element and material
state variables at an integration point of an element. In the example below, we request
the axial force of element 23 and the state variable number 2 (one of the shear stresses) of
the element whose centerpoint is closes to a point with coordiates 0.1, 0.5, 0.3 in inches.

TimeHistoryList Hist {

. . .

bm-Rebars 23 af // axial force

bm-Rebars cl 0.1 in 0.5 in 0.3 in ip 1 sv 2

// Available quantities at the element level

bm-... AxialForce

bm-... ShearForceY

bm-... ShearForceZ

bm-... ShearForce // sqrt(sfy*sfy + sfz*sfz)
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bm-... MomentY

bm-... MomentZ

bm-... Moment // sqrt(bmy*bmy + bmz*bmz)

bm-... AxialStrain

// Available quantities at the list level

// These are max. value among all the element

bmL-... AxialForce

bmL-... ShearForce // sqrt(sfy*sfy + sfz*sfz)

bmL-... Moment // sqrt(bmy*bmy + bmz*bmz)

}

In the future, it would be desirable to also be able to compute the maximum bending
moment in an element.

7.2.2 Plot Commands

Plotting attributes are specified in a plot list

PlotList PLOT {

. . .

bmL PRT1 {

// you may selecte one of the contour variables below

ContourVariable AxialForce

ContourVariable ShearForceY // sfy

ContourVariable ShearForceZ // sfz

ContourVariable ShearForce // sf = sqrt(sfy*sfy+sfz*sfz)

ContourVariable MomentY // bmy

ContourVariable MomentZ // bmz

ContourVariable Moment // bm = sqrt(bmy*bmy+bmz*bmz)

ContourVariable StateVariable 1

ContourVariable Velocity

ContourVariable X-Velocity

ContourVariable Y-Velocity

ContourVariable Z-Velocity

ContourVariable AxialStretch

// stresses are averaged at the nodes unless ..

NoNodalAveraging

NoSmoothing // discrete colored fringe plots

// prescribe range after countour variables is selected (use appropriate units)

RangeMinValue 0 psi

RangeMaxValue 10000 psi

}

}
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Fragmentation Commands

The beam fragmentation scheme is consistent with the fragmentation schemes employed
for quadrilateral and hexahedral meshes. Failed elements are not ‘eroded’ or ‘nullified’
as in other common schemes. Instead, elements are disconnected at their common node
when local failure criteria are satisfied. This is accomplished by inserting a new node and
performing a local remeshing by indroducing a discontinuity in the mesh. A temporary
cohesive element is introduced between the two overlapping nodes for dissipating fracture
energy. Currently, the failure criterion at the node that connects to adjacent elements is
based on the average stretch of the two elements. When the average stretch exceeds an
input failure value, then the two elements are disconnected. It is possible to introduce
stochastic failure by assigning a statistical distribution to the allowable stretches at the
nodes. In this case, the failure stretch for each node is computed at the beginning of the
simulation by multiplying the input failure stretch ing a parameter obtained from the
requested statistical distribution. In this fashion, some spots are weaker than others.

#-- Add following lines after element definition

Weibull { . . . } // optional statistical distribution

Cracking { fail 0.03 [ decay 0.8 ] [ stiff 3 ] }

// fail 0.03 : failure stretch, [1]

// decay 0.8 : insert penalty spring and reduce force [2]

// stiff 3: do not fail 3 bonds adjacent to failed bond [3]

[1] Failure stretch has no dimensional units. Two beam elements are disconnected at
their common node when the average stretch of the two elements exceeds the local failure
stretch at the node.
[2] The decay parameter is used to reduce the cohesive force as the two elements are
pulling apart from each other, thus dissipating a certain amount of energy (fracture
energy).
[3] The stiff parameter is used to prevent a string of elements from fracturing into
single element fragments.

Square solid section

sec s m MATE r 10 mm i 5 p 4

m: material

s: side , can also use

A 315 mm2 // section area

i: # of int points =6, 2x2 truss points + 2 shears

=11, 3x3 truss points + 2 shear

p: # of plotting pnts =0: line

=4: square

Circular solid section

sec o m MATE r 10 mm I 5 p 1
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m: material

r: radius, can also use

d 20 mm // diameter

A 315 mm2 // section area

I: # controls subdivision of cross section in sub areas [1]

I can vary as 0, 1, 2, .... For I = 0, the beam is a truss

that works only in compression or tension, no bending or shear

p: # of plotting pnts =0: line

=1: cylinder

=6: hexagonal X section

=12: 12 sided X section

K: torsional stiffness (units are moment/radian, use units for moment)

T: maximum torsion in either orientation [2]

[1] The circular cross section is divided into I concentric rings of equal radial widths. The
inner ring is divided into three sectors, the second inner ring is divided into 6 sectors,
the third ring into 9 sectors and so forth. This method guarantees that all sectors have
equal area. Integration points are placed inside the sectors so as to produce the correct
moments of intertia. Two additional integration points are added for computing shear
stresses in the two orthogonal cross directions.

Note that cross shear stresses and axial tensile/compressive stresses are uncoupled
for the purposed of plasticity.

Tubular section

sec O m ‘MaterialName’ r 10 mm t 1 mm i 5 p 1

m: material

r: radius, can also use

d 20 mm // diameter

t: thichness

i: # of int points around circumference

p: # of plotting pnts =0: line

=1: cylinder

=6: hexagonal X section

=12: 12 sided X section

Rebar section

sec R m Steel # 5 p 1

m: material

#: 5 : schedule 5

p: =0 plot rebars as lines

p: =1 plot rebars as cylinders

// diameter can also be specified using ’d’ or ’r’ (radius)

sec R m Steel r 10 mm p 1
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Z section

sec O m MATE t 1 mm h 10 mm w 10 mm

m: material

t: thickness

h: height

w: width

x: x-offset

y: y-offset

Hat section

*---* *---*

a |h | a y

| b | |

*--o--* +--x

sec h m MATE t 1 h 10 W 15 a 4

m: material

t: thickness

h: height

a: flange width

b: flange width

W: total width (W = a+b+a)

x: x-offset

y: y-offset

7.2.3 Linear Elastic Beams - Uniform Cross Section

This list consists of a collection of linear elastic beams with uniform cross section. The
beam formulation is based on the Euler-Bernoulli beam theory. A beam element is
defined using two nodes. Each beam element has a corotational local reference system
XYZ. The X direction is aligned with the beam axis from node 1 to node 2. The second Y
direction is perpendicular to X and is initialized at time zero using a ReferenceSystem

object previously defined. The section properties are defined in the local Y-Z plane
perpendicular to the beam axis. The sections properties consists of the following data:

• cross section area A,

• moment of inertia about the Y-axis IY,

• moment of inertia about the Z-axis IZ, and

• torsion constant J.

The torsion constant of the section is not to be confused with the polar moment of inertia.
The two are identical for round shafts and concentric tubes only. For other shapes J must
be determined by other means. The section properties are internally calculated for a few
common cross sections (see sample input listing below) or explicitely entered.
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EdgeList ‘listName’ LinearBeam {

Material ‘materialName’

// Select one of the available cross sections

RectangularCS { by 3. in bz 0.5 in }

CircularCS { Ro 5.125 in Ri 4.875 in }

// or specify cross section properties explicitely

CrossSection { A 4in2 IX 5.33 in4 IY 0.33 in4 J 5.1 in4 }

// Read mesh

NodeList ‘nodeListName’

ReadObjects 1

//j j1 j2

1 1 2

// or generate mesh internally

Generate {

// see generate commands for EdgeList

}

}

7.2.4 Linear Elastic Beams - Non-Uniform Cross Section

This list is essentially an extension of the previous list. The only difference is that, as
the name implies, the cross section properties may vary from beam to beam. Thus, the
input line for each beam must include the definition of the section properties explicitely,
as shown in the example below. below.

EdgeList ‘listName’ LinearBeamNonUniformCS {

NodeList ‘nodeListName’

Material ‘materialName’

ReferenceSystem ‘refSysName’

ReadObjects 10

// j n1 n2 other data

1 1 2 L in Y 0. 1. 0. A 2.17 IY 1.8 IZ 1.8 J 3.601

2 2 3 L cm n3 9 A 3.763 IY 2.813 IZ 2.813 J 5.626

3 3 4 Rect { bY 2.125 in bZ 1.5 in }

4 4 5 Rect { b 2.125 in }

5 6 6 Circ { Ro 4 in }

6 6 7 Circ { Ro 4 in Ri 3.5 in }

7 7 8 I { wf 2. in tf .2 in hw 2. in tw 0.1 in }

. . .

}

For the first beam, the cross section properties are entered explicitely. In this case, it is
mandatory to enter the length units, L in. The local Y-direction is entered specifying a
vector V using the command( Y 0. 1. 0 ). The vector V does not need to be unitary
or perpendicular to X. The local reference system is computed using these operations: Z
= X x V, and Y = Z x X, where ’x’ is the vector outer product.
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For the second beam, the Y-direction is specified using a third node n3. In this case,
the Y-direction is oriented from the projection point of n3 on the beam toward node n3

itself.
For the third beam, the cross section is rectangular with 2.125 in in the local Y-

directions and 1.5 in in the Z-direction. Square cross sections can be also specified as in
the fourth beam.

For the fifth beam, the cross section is a solid cylindrical rod with radius 4. in.
Annular cross sections can be specified as in the sixth beam.

7.3 Geometric Pair Detection

The node-pair lists consist of a set of lists that implement various types of interactions
between two nodes or two particles (recall that in MARS particles and nodes are used
interchangeably). Note that this set includes a master-slave formulation, which is a type
of constraint list, but not the inter-particle contact list, which is grouped with the contact
lists.

7.4 Geometric Pair-Detection

This is a basic list that only finds pairs of particles, either from a single node list or from
two node lists, whose distance is less than a specified detection distance. This is a base
list for the lists that follow.

NodePairList ‘ListName’ Geometry {

NodeList ‘List1Name’

NodeList ‘List2Name’

DetectionDistance 0.6 cm

Node1Thickness 0.4 cm

Node2Thickness 0.2 cm

}

7.5 Master-Slave Constraints

This list consists of a set of master-slave constraints between pairs of nodes. The con-
straint formulation makes it possible to release some degrees of freedom with respect to
a local co-rotational reference system which rotates along with the master node. Each
constraint is defined in a single input line. The input consists of two nodes, the first node
is the master node, the second node is the slave node. The nodes can be in the same
list or different lists. No requirement is made on whether the nodes are overlapped. If
nothing else is specified, then all six degrees of freedom are tied. If some DoF’s need to
be released, then an initial local reference system need to be defined.

NodePairList ‘ListName’ MasterSlaveConstraints {

ReadObjects 2

// 1st node is master, 2nd node is slave like in master-slave
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‘NodeListName’-34 ‘NodeListName’-43 L ‘RefSysName’ T XXX R OXX

‘NodeListName’-14 ‘NodeListName’-76 X 0.7 0.7 0. Y 0. 1. 0. R XOX

}

For example, to model a hinge around the local X axis it is necessary to specify a local
reference system which includes the X axis (as well as a Y axis which can be any arbitrary
direction perpendicular to the X axis), and the R OXX labels. A spherical bushing can be
specified by entering the label R OOO only.

7.6 Node-Pair Attraction List

This list operates either on a single node list or on two node lists. When a single node list
is specified, the algorithm in this list finds pairs of particles whose distance is less than a
specified detection distance. The two particles in each pair attract each other with a force
F inversely proportional to the distance d between the centers of the two particles using
the simple vectorial equation F = C * u / d where C is a specified attraction constant
and u is the unitary vector connecting the two particles.

When two node lists are specified, particles from the first list are paired to particles
of the second list when their distance is less than the detection distance. The same
attraction forces, discussed in the previous paragraph, are applied to the particles in
each pair.

When this list is applied in conjuction with the Node-Pair Repulsion list on a set of
loose particles, it generates interesting dynamic behaviors.

NodePairList PosNegPairs Attraction {

NodeList PosNodes

NodeList NegNodes

DetectionDistance 0.6 cm // [1]

UpdateInterval 0.1 ms // [2]

Node1Thickness 0.4 cm

Node2Thickness 0.2 cm

AttractionConstant 45 dyn-cm // [2]

}

[1] The DetectionDistance parameter is used for limiting the number of pairs in the
list to the pairs whose distance is less than this value.
[2] The UpdateInterval parameter is used for controlling how often the pairs are up-
dated. It depends how quickly the particles move.
[3] The attraction constant has the units of a force times a length.

7.7 Node-Pair Repulsion List

This is similar to the list above with the only difference that the particles in each pair
repel each other with a force F = - C * U / d.
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NodePairList PosNegPairs Repulsion {

NodeList PosNodes

DetectionDistance 0.6 cm // [1]

UpdateInterval 0.1 ms // [2]

Node1Thickness 0.4 cm

RepulsionConstant 45 dyn-cm // [3]

}

7.8 Node-Pair VanDerWaals List

NodePairList ‘AttractionForces’ VanDerWaals {

NodeList ‘Particles’

DetectionDistance 4 cm

NodeThickness 0.4 cm

HamakerConstant 45

ThreshholdGap 0.4 nm

}

7.9 Node-Pair NanoParticle List

NodePairList ‘ListName’ NanoParticles {

NodeList ‘Particles’

DetectionDistance 4 cm

NodeThickness 0.4 cm

UpdateInterval 1. ns

ContactForce Hertz {

YoungsModulus 59 MPa

PoissonsRatio 0.2

}

FrictionForce {

StaticFriction 0.3

DynamicFriction 0.2

}

RollingResistance {

Kr 1.e-4 Kt 1.e-4 Fr 0.2 Ft 0.2

}

VanDerWaalsForces {

HamakerConstant 1.61e-20 J

ThreshholdGap 0.4 nm

}

IonicForces {

DLVO // or SI

}

}
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7.10 Nano Particles

The nano-particle interaction list employs the same contact models which are used in the
contact list. Please, refer to the ‘contact models’ section of this manual.

A minor difference between regular contact between particles and contact formulas
for nano-particles is the way nano-particle penetration is calculated. The acutal gap
between two nano-particles is calculated using the formula:

g = d− r1 = r2
where d is the distance between the centers of the two particles, r1 and r2 are the

radii of the two particles. For contact purposes, the gap can be redifined by controlling
the range of the particle radii, [rmn-rmx]. Essentially, particle radii must be at least rmn
but no more than rmx, as shown in this code snippet:

R1 = max(rd1, rmn);

R1 = min(R1, rmx);

R2 = max(rd2, rmn);

R2 = min(R2, rmx);

gapC = dst - R1 - R2;

The negative of ‘gapC’ is the inter-particle penetration which, when positive, is used
to compute contact forces. The values of rmn and rmx are initialized to 0. and 1.e30
respectively. They are specified via input using the commands:

MinContactRadius 4 nm

MaxContactRadius 8 nm

If the user wants to set the radii of all particles to the same value, the following command

ContactRadius 5 nm

sets rmn = rmx = 5 nm. nm.

7.10.1 Tabulated Forces

When the built-in equations are not adequate for representing the inter-particle forces,
including ionic forces, it may be desirable to define these forces as a tabulated function,
where x is the the inter-particle gap and y is the inter-particle force. Note that these
forces overlap to any other force, including contact and VanDerWaals forces.

LoadCurve ‘CurveName’ {

// inter-particle force versus gap table

. . .

}

NodePairList ‘ListName’ NanoParticles {

. . .

TabulatedForce ‘CurveName’

}
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7.10.2 VanDerWaals Forces

The VanDerWaals force is the attractive or repulsive force between molecules (or between
parts of the same molecule) other than those due to covalent bonds or to the electrostatic
interaction of ions with one another or with neutral molecules [Wikipedia]. The expres-
sion for the VanDerWaal force implemented in MARS employs the Hamaker constant
‘hmk’ and a treshold gap value ‘thg’. The C++ code of the implementation is listed
below.

D = 2. * min(R1, R2); // R1, R2 radii of the two particles

gp = max(wgp, thg); // wgp: gap between the two particles

x = gp / D;

x1 = x + 1.;

x2 = x * (x+2.);

// expression for the VanDerWaals force ‘frc’

frc = hmk/(6.*D) * (2.*x1/x2 - x1/(x2*x2) -

2./x1 - 1./(x1*x1*x1));

The input for VanDerWaals forces is shown below

NodePairList ‘ListName’ NanoParticles

. . .

VanDerWaalsForces {

HamakerConstant 1.61e-20 J

ThreshholdGap 0.4 nm

}

7.10.3 Plotting Options

It is possible to generate contour plots of the contact stresses. Contact stresses are
computed as described in the online manual. The command for generating contour plots
in Quasar format are given below.

PlotList ‘ListName’ {

. . .

npL ‘ListName’ {

RedValue -100 psi

BlueValue 0 psi

StressComponent XX

// valid components are: XX, YY, ZZ, YZ, ZX, XY

}

}

If the Paraview format is chosen, then, there is no need to specify stress components
and min-max values. These operations are done in Paraview. The Paraview file contains
eight records listed below:
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1. XX-component of the contact stress

2. YY-component of the contact stress

3. ZZ-component of the contact stress

4. YZ-component of the contact stress

5. ZX-component of the contact stress

6. XY-component of the contact stress

7. Maximum contact stress

8. Force chain vector

Note that Paraview makes it possible to plot force chain vectors. The commands for
writing a Paraview file sequence are:

PlotList ‘ListName’ {

Paraview

. . .

npL ‘ListName’ { }

}

7.11 Node-Pair Penalty Constraints

NodePairList ‘ListName’ PenaltyConstraints {

ForcePenaltyStiffness 1.e N/m

// use MomentPenaltyStiffness to constrain moments

[ MomentPenaltyStiffness 1.e Nm ]

ReadObjects 2

‘List1’-34 ‘List2’-43

‘List1’-14 ‘List2’-76

}

8 Triangular Face and Shell Elements

8.1 Triangular Face Lists

The TriangFaceList is used to define a set of triangular faces. These faces can represent:

• purely geometric entities,

• faces subjected to pressure,

• membrane elements,

• shell elements,

• a set of disconnected rigid triangles.
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The type of face is specified in the first line after the list name. The most basic list
is the geometric type, where objects consists of triangular faces defined by three nodes.
The commands below refer to geometric lists but can also be used in the other lists.
Other lists have additional commands which are described in later sections. Note that
the triangular face lists created by other lists, e.g. the external faces of a tetrahedral
mesh, are of the geometric type.

TriangFaceList ‘ListName’ ‘type’ {

// where the keyword ‘type’ can be one of the following:

// Geometry: this can be used to define plain faces

// Rigid: this is used to define rigid triangular faces

// UniformPressure: faces subjected to uniform pressure load

// CoordinateDependentPressure: pressure load depends on spatial locations

// MultiplePressureHistories

// SpecialLoad

// HyperElasticMembrane

// DktShell

//

// 1. Specify thickness [Optional]

Thickness 0.125 in // default = 0.

// 2. Specify density for rigid body calcs [Optional]

Density 7.8 g/cm3

// if thickness = 0, then mass is also 0.

// 3. Specify front and/or back color [Optional]

FrontFaceColor gray // default lightgray

BackFaceColor red // default lightgray

// 4. Specify node list

NodeList NODS

ReadObjects 254 // number of faces

// i n1 n2 n3

1 124 243 56

2 56 238 121

. . .

// select commands

Select, Unselect, ... // see below

// make commands

Make TriangFaceList Sublist // list of selected faces

Make EdgeList SharpEdges // see below

Make NodeList SelNodes // list of nodes attached to selected faces

SelectNodes // attached to selected faces

// face orientation command

InvertOrientation // invert orientation of all faces

// orient faces so that normal is toward direction nx, ny, nz

Orient Direction nx ny nz

// orient faces so that normal points toward point
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Orient Toward 1. cm 5. cm 3. cm

// orient faces so that normal points away from point

Orient AwayFrom 1. cm 5. cm 3. cm

// orient faces in same orientation as face 56 using wavefront method

Orient Wavefront 56

Write PartMeshDataFile PRT1.mrs

ReadFile PRT1.mrs

ImportSelectedTrngFacesFrom EXTN [1]

}

[1] can be used to create a new face list (e.g. DKT shell list) based on triangle faces
selected in another triangle face list.

8.1.1 Select commands

Select [criteron]

AlsoSelect [criteron]

Unselect [criteron]

Reselect [criteron]

InvertSelection

[criterion] can take the following forms

all // all faces

for 25 // face 25

for 1 5 // faces 1 through 5

for 1 100 2 // faces 1 through 100 step 2

FacesWithAtLeast1NodeSelected // in short: 1n

FacesWithAll3NodesSelected // in short: 3n

FacesPointingToward 0. 5. 4. // in short: tw 0. 5. 4

FacesWithDotProduct 1. 0. 0. > 0.5 // in short: dp 1 ...

// faces such that dot-product with 1,0,0 is greater than 0.5

In addition, it is possible to select (or unselect) nodes attached to the faces that are
selected using the commands SelectNodes and UnselectNodes. Examples are given in
the selection section of the node lists

8.1.2 Generate commands

Several simple triangular meshes can be internally generated in MARS. Following is a
list of surfaces that can be generated. Multiple surfaces can be generated withing the
same ‘Generate’ block and merged together with the ‘MergeNodes’ command

Generate {

Cylinder {

ReferenceSystem Local

EdgesOnCircle 36 // must be multiple of 6

Radius 4. in
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Length 10. in

ElementSize 1. in // in axial direction

}

Disk {

ReferenceSystem Local // optional

Radius 4. in

OutsideEdges 36 // must be multiple of 6

}

Annulus {

ReferenceSystem Local // optional

InnerRadius 4. in

OuterRadius 6. in

InsideEdges 24 // must be multiple of 6

OutsideEdges 36 // must be multiple of 6

}

Sphere {

ReferenceSystem LOCL

Radius 10. in

Refinement 3

}

Single { }

Rectangle {

1 10 ; 1 6 ; // index progression like in INGRID

-5. 5. //

-5. 5. //

}

Box {

Dimensions 2 m 2 m 5 m

Elements 4 4 10

}

GenericPlate { // [1]

u in // length units for this part

R RSYS // reference system [optional]

L 0.15 // typical length of an element

i // invert quad orientation if necessary

P // define polygonal external outline

n 0.0 0.0 // first node of polygon

n 1.0 0.0 // second node of polygon

. . .

c // close the polygon

// enter internal circular holes (x, y, R)

s 5 // min no. of sides in holes [optional]

C 0.5 0.5 0.2 // [2]

. . .

}
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MergeNodes 0.001 in // tol = 0.001 in

}

[1] This command is used to generate a flat plate with an arbitrary polygonal outline
containing any number of circular holes. The polygonal outer outline is defined entering
the coordinates of the vertices of the polygon. This generation scheme employs the
external program triangle.

[2] Enter one line for each hole. The format is C xc yc rad, where xc and yc are
the coordinates of the center and rad is the radius. The hole should be fully contained
inside the master polygonal surface.

8.1.3 Make commands

The Make TriangFaceList is used for generating a sub-list of triangular faces which
have been previously selected. The new list is of the ‘Geometric’ type; in other word,
MARS will not perform any operation on it (e.g. computer internal forces).

The Make EdgeList command is used to generate a list of edges from the edges of the
triangular faces. This command must be terminated by a keyword for the edge selection
criterion; three options are available:

Make EdgeList ListName AllEdges

Make EdgeList ListName SharpEdges

Make EdgeList ListName UnmatchedEdges

The option AllEdges is used to generate a list of all edges of the triangular mesh. The
option ‘SharpEdges’ is used to generate a list of edges for which the attached faces form
an angle greater than 60 degrees. The option UnmatchedEdges is used to generate a
list of edges which are shared by a single face; note that if the surface is closed (e.g. a
hollow prism), all edges are matched and the generated edge list will be empty. The list
generated using the SharpEdges command includes unmatched edges.

8.1.4 How to make sublists

It is often desirable to make sublists from a parent list to isolate a set of faces on which
we may want to impose special conditions. For example, let’s consider a tetrahedral mesh
of a solid cylinder. We want to create four lists:

1. top circular surface

2. bottom circular surface

3. top and bottom surfaces

4. cylindrical surface

The sublists may be used to impose independent pressure conditions. The commands
for accomplishing this objective are shown below. For convenience, we assume that the
cylinder is oriented in the z-direction and the coordinates of the bottom and top faces
are respectively 0. in and 4. in.
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TetSolidList Cylinder Geometry {

. . .

Make TriangFaceList CylinderFaces

}

TriangFaceList CylinderFaces {

EditNodeList {

Select cz > 3.99 in

}

Select FacesWithAll3NodesSelected

Make TriangFaceList TopSurface

EditNodeList {

Select cz < 0.01 in

}

Select FacesWithAll3NodesSelected

Make TriangFaceList BottomSurface

EditNodeList {

Select cz < 0.01 in

AlsoSelect cz > 3.99 in

}

Select FacesWithAll3NodesSelected

Make TriangFaceList TopBottomSurface

InvertSelection

Make TriangFaceList CylindricalSurface

}

A more compact way to accomplish the same task is shown below:

TriangFaceList CylinderFaces {

Select FacesWithDotProduct 0. 0. 1. > 0.5

Make TriangFaceList TopSurface

Select FacesWithDotProduct 0. 0. -1. > 0.5

Make TriangFaceList BottomSurface

AlsoSelect FacesWithDotProduct 0. 0. 1. > 0.5

Make TriangFaceList TopBottomSurface

InvertSelection

Make TriangFaceList CylindricalSurface

}

In this cases the faces of the top surface are selected by using the criterion that the dot
product of their normal with vector 0, 0, 1 is greater than 0.5. By using appropriately
the node selection and face selection commands, it should be possible to extract a list of
faces that make up the desired surface. The sublist can be used to applied pressure loads
as in the example below.

TriangFaceList CylinderFaces {
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Select FacesWithDotProduct 0. 0. 1. > 0.5

Make TriangFaceList TopSurface

Select FacesWithDotProduct 0. 0. -1. > 0.5

Make TriangFaceList BottomSurface

AlsoSelect FacesWithDotProduct 0. 0. 1. > 0.5

Make TriangFaceList TopBottomSurface

InvertSelection

Make TriangFaceList CylindricalSurface

}

It is a good idea to first run the problem in interactive mode and at the interactive
prompt, select the lists and plot them to verify that the commands produced the desired
surfaces.

8.1.5 Non-Reflecting Boundaries

This list is used for prescribing non-reflecting boundaries. Non-reflecting boundaries are
used for allowing all outgoing stress waves (longitudinal and transversal) to exit the
material domain without reflections. This is accompished by first identifying all external
triangular faces of a solid tetrahedral mesh. The energy absortion at the boundaries is
implemented using damping equations whose parameters depend on the elastic properties
of the material.

TriangFaceList ‘ListName’ NonReflectingBoundaries {

// 1.) Specify face list (Req.), either a face list

// or a shell list

FaceList ‘listName’

ShellList ‘listName’

// 2.) Specify Material (Req.)

Material ‘materialName’

}

8.2 Triang Face List

These lists are used for applying pressure loadings on a set of triangular faces. Several
loading types are available:

1. Spatial Uniform pressure loading

2. Spatial varying pressure loading

3. Special loads

4. Patched pressure histories

The general syntax for these lists uses the format below. More details are given for each
specific loading tpye.
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TriangFaceList ‘listName’ ‘loadingType’ {

. . .

}

8.2.1 Uniform Pressure

This list is used for prescribing a time-dependent uniform pressure history over a set of
triangular faces. The pressure can be prescribed either using a ‘LoadCurve’ tabulated
expression or using an ‘Equation’. The latter is particularly useful when the pressures
depend on the change in volume affected by the motion of the faces themselves. The
single value time-dependent pressure is multiplied by the current area of each face in the
direction opposite to its normal.

Equation ‘equationName’ {

. . .

}

TriangFaceList ‘ListName’ UniformPressure {

// 1. (Req.) Specify, either a face list

// or a shell list

FaceList ‘listName’

ShellList ‘listName’

// 2. (Req.) Specify LoadCurve

LoadCurve ‘lcName’

}

8.2.2 Uniform Pressure - Constant Face Areas

This list makes it possible to apply uniform pressure histories on a set of faces. In this
case, the nodal forces are computed by multiplying the applied pressure to the initial
surface area using the initial surface normal. This approach works well for LDPM models
which experience major fragmentation. In some cases, some of the surfaces grow very
large because fragments centered at the nodes move away from each other.

WetTriangFaceList ‘ListName’ {

UniformPressureConstantFaces {

// 1.) Specify face list (Req.), either a face list

// or a shell list

FaceList ‘listName’

ShellList ‘listName’

// 2.) Specify either LoadCurve or Equation (Req.)

LoadCurve ‘curveName’

Equation ‘equationName’

}

}

98



8.2.3 Special Load

This list is used for prescribing location dependent pressures on a set of triangular faces.
These pressures are provided by the SpecialLoad object described in ‘Miscellanous Ob-
jects’ section. The input format for this list is given below:

SpecialLoad ‘LoadName’ ‘LoadType’ {

. . .

}

TriangFaceList ‘ListName’ SpecialLoad {

// 1.) Specify face list (Req.), either a face list

// or a shell list

FaceList ‘ListName’

ShellList ‘ListName’

// 2.) Enter special load (Req.)

SpecialLoad ‘LoadName’

}

Only the selected faces of the selected face/shell list are incorporated in this list

8.2.4 Multiple Pressure Histories

This list is used when pressure histories are independently computed by a CFD solver
at certain stations on the exposed surfaces. The pressure histories are read into a Load-
CurveList which is referenced here. This list uses the triangular faces of another list,
either a face-list or a shell list. The faces in the parent list can change node definition, as
it happens during fragmentation. However, if the parent list represents the external sur-
faces of a solid mesh and the number of faces increases as a result of solid fragmentation,
this list will only employ the initial faces.

TriangFaceList ‘ListName’ MultiplePressureHistories {

// 1.) Specify face list (Req.), either a face list

// or a shell list

Link FaceList ‘listName’

Link ShellList ‘listName’

// 2.) Specify PressureHistory List(Req.)

LoadCurveList ‘PressureHistories’

// 3.) Optional

AutomaticTimeOffset // [1]

TimeShift 345 ms // [2]

}

[1] The AutomaticTimeOffset command is designed to offset the time histories so that
the pressure loads start at time 0. This is done by computing the first time pressures are
different than 0. in any of the curves. All pressure histories are moved forward in time
by that amount.
[2] The TimeShift command moves all pressure histories in time by the specified amount.

Time histories variables variables
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8.3 Triangular DKT Shell List

This lists consists of flat triangular shell finite elements based on the discrete Kirchhoff
(DKT) plate element formulation.

The input for this list include all the commands for the geometric triangular list, in-
cluding generation, selection, and make commands. In addition, the following commands
are available:

TriangFaceList ’ListName’ DktShell {

// commands from geometric shell list

. . .

// select one of the shell integraton schemes (required)

// see next section for explanation

SteelShell { m MATE i 3 }

Composite3DShell { . . . }

// specify a reference system for orienting local IP (optional)

ReferenceSystem ’refSysName’

// it is possible to run DKT with 2 or 3 IPs but 4 is better

NumberGaussianPoints 4 // optional

PlotLocalDirections // [3]

}

If the reference system is not entered, then the global reference system is used. If the
number of gaussian points is not entered, then the four integration points are used.

The specification of the reference system can be useful for specific geometries. For
example, in the case of a cylindrical shell it is desirable to compute stresses in a cylindrical
coordinate system, so that it would be easy to generate contour plots of the hoop or axial
stresses. This is accomplished using the commands below

ReferenceSystem CylRS cylindrical {

AxialDirection 0. 0. 1

RadialDirection 1. 0. 0

}

TriangFaceList ’ListName’ DktShell {

. . .

ReferenceSystem CylRS

. . .

}

[3] This command creates a set of Paraview files for displaying the local reference systems
of all elements in the list. Four files are created: ’listName’.Faces.vtu, ’listName.X.vtu,
’listName.Y.vtu, and ’listName.Z.vtu. All four files need to be loaded in Paraview.
The three local directions are shown as three segments at the center of each element.
The X and Y local direction lay on the element plane and cross at the center-point. The
Z axis is displayed on the positive direction of each element. This makes it possible to
determine which direction is positive when applying pressure loads. The X- Y- and Z-
directions can be toggled on or off in Paraview.
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8.3.1 Shell Integration Schemes

A Shell Integration Scheme (SIS) connects the deformation parameters at the shell inte-
gration points to one or more material models. The SIS’s are available for both triangular
and quadrilateral shells.

SteelShell

This shell integration scheme is intendented for shells made of a single material. The
material model must implement shell type constitutive equations, that relate five com-
ponents of the stress tensor to five components of the strain tensor. The assumption is
plane stress; in other words, the stress through the thinkness is assumed to be zero.

SteelShell {

m Steel // [1]

i 5 // [2]

}

[2] This is the number of integration points through the thickness. Acceptable numbers
vary from 1 (membrane) through 5.

Composite3DShell

This shell integration scheme is intendented for composite shells consisting of multiple
layers. Unlike the SteelShell, this scheme employs a full tensorial material formulation.
To do this, the scheme has internal degrees of freedom across the thickness, so that it
can properly characterize the transversal strains.

Since composite layers are typically orthotropic, and the direction of the fibers can
vary from layer to layer, it is necessary to define a rotation angle for each layer. This
angle is used for creating a layer local reference system from the shell local reference
system, by rotating around the shell local Z axis. The updates of the stresses for each
layer are done in the layer local reference system.

IMPORTANT. It is very important to understand the role played by the various
reference systems. The global reference system (GRS with axes x-y-z) is where the cal-
culations for the entire model are done. The shell local reference system (SLRS with
axes X-Y-Z) is an orthogonal co-rotational reference system defined for each shell ele-
ment. The origin of the SLRC is the center of the element. The Z-axis is orthogonal
to the shell. The X-axis and Y-axis are in the plane of the shell. The initial direc-
tion of the X-axis is defined using the ReferenceSystem command (see explanation for
ReferenceSystem. We recommended that you check the shell local directions using the
command PlotLocalDirections. The layer local reference system (LLRS with axis X’-
Y’-Z’) shares the Z axis with the SLRS. The X’ and Y’ axis are obtained by rotating
the X and Y axes by the input angle around the Z axis. The strain rate tensor is first
computed in the SLRS. It is then rotated in the LLRS and passed to the material model.
The material model returns the updated stress in the LLRS, which is rotated back to
the SLRS and used for computing nodal forces. Thus, the strains and stresses in the
material model are computed in the LLRS.
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The input instructions for this shell are below. Layers must be entered in the correct
order, starting from the ’bottom’ surface. For each layer, you must prescribe the material
( m ’materialName’ ), the angle of the layer reference system ( a ’angle’ ), and the
layer thickness ( t ’thickness’ ).

Composite3DShell {

NumberOfLayers 5

// Material Angle Thickness

Layer { m Cmp a 0 deg t 5 mm }

Layer { m Cmp a 45 deg t 5 mm }

Layer { m Cmp a 90 deg t 5 mm }

Layer { m Cmp a -45 deg t 5 mm }

Layer { m Cmp a 0 deg t 5 mm }

ReferencePlane Middle [Top , Bottom ]

MassScalingFactor 100. // [2]

}

The sum of the layer thicknesses must equal the thickness of the shell. MARS will stop
with an error if this condition is not satisfied.

[2]
This integration scheme can also be used for homogenous-isotropic materials, such as

steel. In this case the input would look like this:

Composite3DShell {

NumberOfLayers 3

Layer { m Steel a 0 deg t 5 mm }

Layer { m Steel a 0 deg t 5 mm }

Layer { m Steel a 0 deg t 5 mm }

MassScalingFactor 100.

}

8.3.2 Time Histories

It is possible to save the histories of state variables for the DKT element. Note that
there is a matrix of integration points: there are typically four sets of integration points
over the surface of the element. Each set consists of the integration points through the
thickness. Various combinations are possible and listed below.

TimeHistoryList ’listName’ {

. . .

tfL-’shellList’ 44 sv 1

tfL-’shellList’ 44 SIP 2 sv 1

tfL-’shellList’ 44 TIP 1 sv 1

tfL-’shellList’ 44 SIP 2 TIP 1 sv 1

}
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If no surface point or thickness point is specified, then the average across of all points is
takes. If a surface point is specified ( SIP 2 ) then the average through the thickness is
computed. If a thickness point is specified ( TIP ) then the average over the four surface
point is computed.

9 Quadrilateral Face and Shell Elements

9.1 Quadrilateral Face List

A quadrilateral face/shell list consists of a collection of homogenous two-dimensional
4-node elements. Currently, four types of sublists are available:

QuadFaceList ‘listName’ ‘listType’ {

// ‘listType’ can be:

// Geometry, UniformPressure, SpecialLoad,

// MultiplePressureHistories, NonReflectingBoundaries.

// list attributes

FrontFaceColor gray // default lightgray

BackFaceColor red // default lightgray

// if this list is internally generated, enter

Generate {

. . .

}

// else if this list is derived from another list, enter

SplitTriangFaceList TFLS

SplitTriangFaceList TFLS

// else if this list is specified via input, enter

NodeList NODS // or

InsertNodeList { . . . }

ReadObjects 345

// i n1 n2 n3 n4

1 124 243 56 165

2 56 238 121 78

. . .

// selection commands [optional]

Select, Unselect, ... // see below

Refine 2by2split // refine current mesh into 2x2 tiles

Make EdgeList ListName AllEdges

Make EdgeList ListName SharpEdges

Make EdgeList ListName UnmatchedEdges

// make FaceList of selected faces

Make QuadFaceList ListName

// make NodeList of nodes attached to selected faces

Make NodeList ListName

Write PartMeshDataFile ListName
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// use this command to read nodes and elements previously saved

ReadFile PART.mrs

SelectNodes // [1]

ReselectNodes // [1]

UnselectNodes // [1]

ImportSelectedQuadFacesFrom EXTN [2]

}

[1] The SelectNodes, ReselectNodes and UnselectNodes commands are used to per-
form selection tasks on the nodes used in the definition of previously selected faces [or
all faces]. The node selection can then be used in the node list for various other tasks.

[2] can be used to create a new face list (e.g. QPH shell list) based on quad faces
selected in another quad face list.

9.1.1 Select commands

The selection commands are used to select a subset of the elements in the list.

Select [criteron]

AlsoSelect [criteron]

Unselect [criteron]

Reselect [criteron]

InvertSelection

[criterion] can take one of the following forms

all // all faces

for 25 // face 25

for 1 5 // faces 1 through 5

for 1 100 2 // faces 1 through 100 step 2

1n // faces that have at least 1 node selected

4n // faces that have all 4 nodes selected

tw 0. 5. 4. // faces that point toward (0,5,4)

dp 1. 0. 0. > 0.5 // faces such that dot-product with 1,0,0 is greater than 0.5

Four-node face lists and all derived lists include commands for selecting nodes: SelectNodes,
UnselectNodes, and ReselectNodes. See examples in the NodeList section.

9.1.2 Generate commands

The Generate sub-block is used for generating simple meshes of common geometries
from within Mars. Multiple geometies can be generated and combined within the same
block. The syntax for an input block is shown below. The specific inputs for each part
are discussed in the next sections.

Generate {

// enter one or more geometry feature

Cylinder { . . . }
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Disk { . . .}

Single { . . . }

MergeParts // merge overlapping nodes [1]

}

[1] The MergePars command makes it possible to fuse two or more parts at the common
nodes. This can be useful when generating more complex meshes, such as the mesh of a
hollow cylindrical can with caps at both sides. Attention must be paid that the nodes
on the edges overlap.

Cylinder

These commands generate a hollow cylinder

Cylinder {

ReferenceSystem ‘refSysName’ // [1]

EdgesOnCircle 36 // [2]

Radius 4. in

Length 10. in

ElementSize 1. in // in axial direction [3]

}

[1] This command employs a reference system which was previosly defined outside of the
QuadFaceList section. The axis of the cylinder is aligned with the local z direction and
spans from z = 0 to z = Length. If the reference system is not specified, then the mesh
is generated in the general reference system.

[2] No restrictions are given on the number of elements along the circumference.
[3] The size of the elements in the axial direction will be equal or less than the value

entered.

Disk

Disk {

ReferenceSystem ‘refSysName’ // [1]

EdgesOnCircle 64 // must be multiple of 8

Radius 4. in

}

[1] Same conventions as those ised for the Cylinder. The disk lays in the x-y plane and
is centered at the origin.

Rectangular surface

Rectangle {

LengthUnits in

1 10 ; 1 6 ; // subd in x- and y- directions
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-5. 5. // coord in x- and y- directions

-5. 5. //

[ R PLAN ] // in the x-y plane with corner at the origin

0. //

}

Triangular-based unstructured mesh

This generation method is suitable for generating a large class of coplanar unstructured
meshes. The user must specify the outline of the surface. Any number of internal holes
are also possible. Mars uses the program Triangle (see Plug-in section) which generates
a triangular mesh. The output of Triangle is read back into Mars, which then splits each
triangle into three quadrilateral faces. The mesh is generated in the X-Y plane. If a
reference system is specified, then the mesh is rotated to that reference system. Note
that the mesh can also be translated and rotated using the conventional commnads for
node lists.

Triang-based {

u in // length units for this part

R RSYS // reference system [optional]

L 0.15 // typical length of an element

i // invert quad orientation if necessary

P // define polygonal external outline

n 0.0 0.0 // first node of polygon

n 1.0 0.0 // second node of polygon

. . .

c // close the polygon

// enter internal circular holes (x, y, R)

s 5 // min no. of sides in holes [optional]

C 0.5 0.5 0.2 // [3]

. . .

}

[3] Enter one line for each hole. The format is C xc yc rad, where cx and yc are the
coordinates of the center, and rad is the radius. The hole should be fully contained inside
the master polygonal surface.

Sphere

Sphere { // free order

R CYLN // reference system

r 4. in // radius

n 3 // n x 8 = number of circumferential elements

}
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Duplicate

Duplicate {

r 1 55 // range

x 10 // time

}

Single Element

Single 4 in 6 in

// single element 4 in by 6 in laying in the x-y plane and centered at origin

Ring

Ring {

R ‘RefSysName’ // reference system

// ring lays in local x-y plane

// Specify either nce system

D 4. in // ring diameter

d 2. in // cross section diameter

N 3 // number of subs around the ring

n 3 // number of subs around the section

}

9.1.3 Make commands

The Make QuadFaceList is used for generating a sub-list of quadrilateral faces which
have been previously selected. The new list is of the Geometric type; in other word,
MARS will not perform any operation on it (e.g. computer internal forces).

The Make EdgeList command is used to generate a list of edges from the edges of
the quadrilateral faces. This command must be terminated by a keyword for the edge
selection criterion; three options are available:

Make EdgeList ‘listName’ AllEdges

Make EdgeList ‘listName’ SharpEdges

Make EdgeList ‘listName’ UnmatchedEdges

The option ‘AllEdges’ is used to generate a list of all edges of the quadrilateral mesh.
The option ‘SharpEdges’ is used to generate a list of edges for which the attached faces
form an angle greater than 60 degrees. The option ‘UnmatchedEdges’ is used to generate
a list of edges which are shared by a single face; note that if the surface is closed (e.g.
a hollow prism), all edges are ‘matched’ and the generated edge list will be empty. The
list generated using the ‘SharpEdges’ command includes unmatched edges.
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9.2 Pressurized Quad Face List

These lists are used for applying pressure loadings on a set of quadrilateral faces. Several
loading types are available:

1. Uniform pressure loading

2. Variable pressure loading

3. Special loads

4. Patched pressure histories

The general syntax for these lists uses the format below. More details are given for each
specific loading tpye.

QuadFaceList ‘listName’ ‘loadingType’ {

. . .

}

9.2.1 Uniform Pressure

This list is used for prescribing a time-dependent uniform pressure history over a set of
quadrilateral faces. The pressure can be prescribed either using a ‘LoadCurve’ tabulated
expression or using an ‘Equation’. The latter is particularly useful when the pressures
depend on the change in volume affected by the motion of the faces themselves. The
single value time-dependent pressure is multiplied by the current area of each face in the
direction opposite to its normal.

TrngFaceList ‘ListName’ UniformPressure {

// 1.) Specify face list (Req.), either a face list

// or a shell list

Link FaceList ‘listName’

Link ShellList ‘listName’

// 2.) Specify either LoadCurve or Equation (Req.)

LoadCurve ‘curveName’

Equation ‘equationName’

}

9.2.2 Special Loads

This type of face list is used for situations when pressures can be defined as a function
of time and initial face location. :

SpecialLoad ‘Burst’ ConWep {

. . .

}

QuadFaceList ‘ListName’ SpecialLoad {
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// 1.) Specify face list (Req.), either a face list

// or a shell list

Link FaceList ‘listName’

Link ShellList ‘listName’

// 2.) Specify SpecialLoad (Req.)

SpecialLoad ‘loadName’

}

9.2.3 Multiple Pressure Histories

This list is used when pressure histories are independently computed by a CFD solver
at certain stations on the exposed surfaces. The pressure histories are read into a Load-
CurveList which is referenced here. This list uses the quad faces of another list, either a
face-list or a shell list. The faces in the parent list can change node definition, as it hap-
pens during fragmentation. However, if the parent list represents the external surfaces
of a solid mesh and the number of faces increases as a result of solid fragmentation, this
list will only employ the initial faces.

LoadCurveList ‘PressureHistories’ {

. . .

}

QuadFaceList ‘ListName’ MultiplePressureHistories {

// 1.) Specify face list (Req.), either a face list

// or a shell list

FaceList ‘listName’

ShellList ‘listName’

// 2.) Specify PressureHistory List (Req.)

LoadCurveList ‘PressureHistories’

// 3.) Optional

AutomaticTimeOffset // [1]

TimeShift 345 ms // [2]

}

[1] The AutomaticTimeOffset command is designed to offset the time histories so that
the pressure loads start at time 0. This is done by computing the first time pressures are
different than 0. in any of the curves. All pressure histories are moved forward in time
by that amount.

[2] The TimeShift command moves all pressure histories in time by the specified
amount.

9.3 Quad Shell Lists

QuadShellList NAME ’Formulation’ {

// ’Formulation’ is either:

// ’QphShell’ for the Quad. Physical Horglass formulation, or
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// ’BTsayShell’ for Belytshcko-Tsay formulation

// if this list is used to define a rigid body, enter

Density 7.8 g/cm3

// else select one of the cross sections

SteelShell { m MATE i 3 }

// reference system for local element axis alignment

ReferenceSystem Local

// default: 1st direction = diagonal nodes 1-3

ImportSelectedQuadFacesFrom ... [1]

// if this list is not generated internally, enter

NodeList NODS

ReadObjects 345

// i n1 n2 n3 n4 n5 n6 n7 n8

1 124 243 56 165 234 312 23 126

2 56 238 121 78 56 98 126 66

. . .

#-- else

generate {

#-- see below for generation options

}

#-- optional commands

Make tfL XFAC // generate a list of external surfaces

#-- select commands

Select, Unselect, ... // see below

Select, Unselect, ... // see below

// Face Orientation commands

OrientFaces Toward 0. in 0. in 7. in

OrientFaces AwayFrom 0. in 0. in 7. in

OrientFaces Direction 0. 1. 0

EditNodeList {

// nodlist commands

}

Write PartMeshDataFile PRT1.mrs

Read PRT1.mrs

PlotLocalDirections // [2]

}

[1] This command creates shell elements based on seleted quad faces defined in a QuadFaceList.
[2] This command creates a set of Paraview files for displaying the local reference systems
of all elements in the list. Four files are created: ’listName’.Faces.vtu, ’listName.X.vtu,
’listName.Y.vtu, and ’listName.Z.vtu. All four files need to be loaded in Paraview.
The three local directions are shown as three segments at the center of each element.
The X and Y local direction lay on the element plane and cross at the center-point. The
Z axis is displayed on the positive direction of each element. This makes it possible to
determine which direction is positive when applying pressure loads. The X- Y- and Z-
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directions can be toggled on or off in Paraview.

9.4 Time History Commands

The following line commands are intended to be used inside TimeHistoryList’s to
produce records of global list variables or variables associated to a single element. For
element formulations where the requested variables are not available, the record will
consists of zero values.

TimeHistoryList HIST {

. . .

// histories for entire list

qsL-PART 15 // [1]

qs-PART 1 th // thickness of element 1

qs-PART 1 ar // aspect ratio of element 1

qs-PART 1 ip 2 vm // von mises stress of int pnt 2 of element 1

qs-PART 1 ip 3 mn // min. principal stress of int pnt 3 of element 1

qs-PART 1 ip 3 mx // max. principal stress of int pnt 3 of element 1

qs-PART 1 ip 2 sv 10 // state variable 10 or int pnt 2 of element 1

}

9.4.1 Plot commands

The ability for generating Quasar plot files of shell meshes has been available for all
versions of Mars. Two types of plots can be generated: (1) a conventional type of plot
where shells are depicted using their midplane surface, (2) a ’three-dimensional’ rendering
where the thickness of the shell is properly depicted. Velocity contour can be requested.
The commands for generating Quasar plotfiles are shown below:

PlotList PLOT Quasar {

. . .

qsL SHL1 { thk } // thick plates

qsL SHL2 {

ThinShells

vel RangeMaxValue 1000 in/s

}

qsL SHL3 { thn vel vmn 0. in/s vmx 1000 in/s }

}

The option to write plot files in Paraview format has been added to Mars in August 2013.
For these plots, Mars automatically generates a thick shell rendering with the proper shell
thickness. For shells employing a SteelShell cross-section integration scheme, state
variable data is automatically added to the plot files. In this case, records for all state
variables are included. Since there are multiple integration points through the thickness,
each using an independent set of state variables, the convention is that the top surface of
the thick shell employs the state variable of the integration point closer to that surface.
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Analogously for the bottom surface. For the facets at the edges, we compute an average
of the state variable values. Note that stress components are given in the shell element
local reference system. For example, in pure bending, the top surface may be in tension
while the bottom surface would be in compression. This would be properly rendered in
the plot. The commands for generating paraview plot files of shell lists are:

PlotList PLOT Paraview {

TimeInterval 0.1 ms

qsL SHLS { }

}

Currently, the option for plotting membrane stresses has not been implemented yet.

9.4.2 Weibull distribution

The Weibull distribution has been used very effectivley for characterizing probabilistic
failure in materials and mechanical components. The probability density function is
defined as

P (x) =
g

a

(
x−m
a

)(g−1)

exp
(
−
(
x−m
a

)g)
for x > m, = 0 otherwise

where where

m: location parameter mu

a: scale parameter alpha

g: shape parameter gamma

The cumulative distribution function is defined as

F (x) = 1− exp
(
−
(
x−m
a

)g)

The input command is given by

Weibull { m 0.4 a 1. g 2 [ n ] }

where the optional ’n’ is used to normalize the distribution.

10 Tetrahedral Solid List

The TetSolidList includes a series of lists which implement collections of tetrahedral
shaped elements. Some of the types of tetrahedral elements which are currently available
is listed below:

• basic 4-node tetrahedral shapes,
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• Lattice Discrete Particle Model (LDPM),

• viscous element used to artificially dampen internal motion,

• rigid disconnected elements,

• 4-node elasto-plastic element formulation,

• Cosserat formulation with 6 DoF’s per node,

• explosive element which employs EoS for blast calculations,

• quadratic 10-node tetrahedral shapes and finite element formulations.

All these type are discussed in this section except for the LDPM elements which are
discussed in a separate section, because of the great role that this method plays in Mars.
The input format for tetrahedral list is given below:

TetSolidList ’ListName’ ’type’ {

// where the keyword ’type’ can be one of the following:

// Geometry: this can be used to define rigid bodies

// Explosive: this employs EOS materials

// Ldpm: lattice discrete particle model formulation

// Viscous: used to artificially dampen internal motion

// Flex: 4-node elasto-plastic formulation

// Cosserat: Cesserat formulation with 6DoF’s per node

// 10Node: quadratic 10-node tetrahedral finite element

// if this list is used to define a rigid body, enter

// 1. Material properties

Density 7.8 g/cm3

// else

Material MATE

// You can also use

InsertMaterial Mat {

. . .

}

// if material was not previously defined

// 2. Specify mesh

// if mesh is explicitly defined enter

NodeList Nodes

// or

InsertNodeList Nodes {

. . .

}

// if node was not previously defined

// then, enter element definition

ReadObjects 345 // number of elements
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// i n1 n2 n3 n4

1 124 243 56 165

2 56 238 121 78

. . .

// if mesh is internally generated, enter

Generate {

. . . // see below for generation options

}

CopySelectedElementsFromList ’listName’ // {1}

// This command is also available

MergeAllTetLists // {2}

// 3. Modify mesh [optional commands]

ImproveMesh // remesh locally to eliminate slivers

FlipMesh ’D’ // D = ’X’, ’Y’, or ’Z’ flip mesh

// to make changes on the node list

EditNodeList {

. . . // nodlist commands

}

MergeNodes ’tol’ // ’tol’ is a dimensioned length

// 4. Create additional lists [optional]

Make TriangFaceList ’ListName’ // generate external faces

Make TetSolideList ’ListName’ // generate list of selected tets

Make EdgeList ’ListName’ SharpEdgeds // generate edge list

// 5. select commands

Select, Unselect, ... // see below

SelectNodes // {3}

// use this command to save the mesh in a separate file

Write PartMeshDataFile PART.mrs

// use this command to read nodes and elements previously saved

Read PART.mrs

// use this command to write a table where

// for each node we list its connectivity to

// other nodes, number of tets, etc.

Write ConnectivityData ’FileName’

}

1 The command ’CopySelectedElementsFromList’ appends new tet e lements to the cur-
rent list by copying them from another list. The new elements reference the same nodes
referenced by the original elements. For this reason, the source tet list and the current
tet list must use the same node list. When using this command by itself, there is no need
to specify the node list. The node list of the source tet list will be used for the current
tet list. The new tet elements are distinct from the source elements and are generally of
a different type: for example the source list may consist of geometric tet elements and
the current list may consists of LDPM structural elements.
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2 This command is used to combine meshes from all previously defined tet solid lists.
Currently, the original nodes from the parents lists are referenced in a new node list; the
elements from the previous list are also referenced in the new list. For this reason, this
command should be used in an intermediate mesh manipulation input file. The combined
mesh should be written to an input file that can be later used in a more complex model.

10.1 Examples

TetSolidList RigidRing Geometry {

Density 7.8 g/cm3

NodeList RigidRingNodes

ReadObjects 455

. . .

}

TetSolidList Slab Ldpm {

Material Concrete

Read Slab.mrs

}

10.2 Select Commands

These commands are used to select a subset of elements on which to operate

Select [criterion]

AlsoSelect [criterion]

Unselect [criterion]

Reselect [criterion]

InvertSelection

[criterion] can take one of the following forms:

all // all elements

do 25 // element 25

do 1 5 // elements 1 through 5

do 1 100 2 // elements 1 through 100 step 2

vl > 0.4 // elements with volume > 0.4

vl = 0.4 // elements with volume apprx = 0.4

vl < 0.4 // elements with volume < 0.4

1n // elements with at least one node selected

4n // elements with all four nodes selected

Examples:

Select do 1 100 // select element 1 through 100

AlsoSelect do 201 300 // add elements 201 - 300

Reselect 4n // select only element with all four nodes

// selected from elements selected above

Tet solid lists and all derived lists include commands for selecting nodes: ’SelectNodes’,
’UnselectNodes’, and ’ReselectNodes’. See examples in the NodeList section.
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10.3 Generate Commands

The Generate command is used for generating tetrahedral meshes of simple geometries.
Within the Generate subsection a single or multiple parts can be generated. If multiple
parts are generated some nodes of these parts share the same locations, these nodes
can be merged using the t[mergeParts] command. The general format of the Generate

subsection is shown below:

TetSolidList NAME {

Generate {

// generate one or more parts using commands discussed below

. . .

// merge parts when distance between nodes is < tol

mergeParts 0.001 in // tol = 0.001 in

}

}

Cylinder

The Cylinder command is used for generating a regular tetrahedral mesh of a solid
cylinder or of a section of a pipe.

The following example generates a hollow cylinder with internal diameter of 2. in and
external diameter 2.31 in. The cylinder extends in the z- direction from z = 0.3 in to z =
19.52 in with 9 elements. The numbers 5 and 6 are used to control the curcumferential
mesh density: 5 x 6 = 30 nodes on the inside surface and 6 x 6 = 36 nodes on the outside
surface.

Cylinder { // use ingrid convention

5 6 ; 1 10 ;

2. 2.31 // radii

0.3 19.52 // coordinates in the axial (z) direction

}

A solid cylinder can be generated using the following commands.

Cylinder {

0 3 ; 1 20 ; // first index must be 0

0. 2. // first radius must be 0.

0. 20. // coordinates in the axial (z) direction

}

Prism

The Prism command is used for generating a structured tetrahedral mesh of a paral-
lelepipedal shape.
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/* Generate a prism with regular grid

Parallelepiped { // use ingrid convention

1 5 ; 1 3 ; 1 3 ;

-4. 4.

-2. 2.

-2. 2.

}

Extrusion

The Extrusion command is used for generating an extruded solid starting from a trian-
gular mesh defined in the x-y plane. The triangular mesh is extruded in the z-direction
starting from z = 0 and ending at z = Length with element dimension in the z direction
no larger than Increment.

Extrusion {

TriangularFaceList ’listName’

Length 10 in

Increment 1 in

}

Solid Disk

Disk { // use ingrid convention

0 6 7 ; 0 1 2 ;

0. 2. 2.31

0. 0.3 0.6

d 6 7 ; 0 ;

d 5 7 ; 1 ;

d 0 2 ; 2 ;

}

10.4 Make Commands

The Make TetSolidList is used for generating a sub-list of all tet elements which have
been previosly selected. The new list is of the ’Geometric’ type; in other word, MARS
will not try to compute internal forces.

The Make TriangFaceList is used for generating a list of all triangular external faces
of the complete mesh. If the user desires to generate external faces of a portion of the
mesh, then the ’Make TetSolidList’ command should be done first and the face list should
be generated from inside the tet sub-list.

The Make EdgeList command is used to generate a list of edges from the edges of
the tetrahedral elements. This command must be terminated by a keyword for the edge
selection criterion; three options are available:
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Make EdgeList ’ListName’ AllEdges

Make EdgeList ’ListName’ SurfaceEdges

Make EdgeList ’ListName’ SharpEdges

The option AllEdges is used to generate a list of all internal and external edges of the
tet mesh. The other two options rely on the list of external tet faces generated using
the ’Make TriangFaceList’ command. If the triang-face list was not generated, MARS
will automatically generate it. The option SurfaceEdges is used to generate all external
edges of the tet mesh. This list is useful for edge-edge contacts. The option [SharpEdges

is used for generating a list of edges for which the attached faces form an angle greater
than 60 degrees. This list is useful for graphics when we want to represent the outline of
a solid component.

10.5 Time History Commands

The following line commands are intended to be used inside Time History lists to produce
records of global and element variables.

TimeHistoryList HIST {

. . .

// histories for entire list

ttL-PART Volume

ttL-PART InternalWork

ttL-PART DissipatedEnergy

// histories for single element

tt-PART 1 Volume // element 1 only

tt-PART 1 StateVariable 3

}

For internal work we intend the work done by element internal forces which results in
recoverable elastic energy and dissipated energy

10.6 Plot Attribute Commands

Plotting attributes can be specified in the element list or in the plot list

TetSolidList PART {

. . .

PlotAttributes {

ContourVariable sv 1

NoNodalAveraging

NoSmoothing

}

}

PlotList PLOT {

. . .
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ttL PRT1 {

ContourVariable sv 1

NoNodalAveraging

SelectedElementsOnly

NoSmoothing

}

ttL PRT2 { OutlineOnly }

}

10.7 Viscous Tets

The purpose of this list is to provide some form of artificial internal damping to kill
internal vibrations. It is different than dynamic relaxation in the fact that a vibrating
moving body will stop vibrating but its average velocity is maintained. This list is used
in conjunction with another list consisting of deformable elements. This list does not
own its objects (tets), but uses the objects of the tet list it is connected to.

TetSolidList ’ListName’ Viscous {

// 1.) Enter master list (Req.)

MasterTetList ’TetListName’

// 2.) Enter either load curve or damping constant (Req.)

LoadCurve ’CurveName’

Damping 0.001 1/s

}

Prescribing the damping coefficient as a function of time using the LoadCurve option
makes it possible to use this feature for computing steady state static solutions. Damping
can then be removed when applying dynamic loads.

The viscous force between nodes J and K in direction i is computed using the equation

fiJK = C (mJ +mK) (vJi − vKi) i = x, y, z

where C is the damping coefficient.

10.8 Spatial Field Functions

The purpose of this list is to provide a spatial field of a scalar variable that affects
material properties at the integration points of finite elements or Ldpm elements. Such
variable could be temperature, irradiation, water level, etc. Typically, these fields would
be computed by another special purpose code. For this list, the spatial distribution of a
variable f is specified at the nodes of a tetrahedral mesh. If the field is constant during
the simulation, then a single record is sufficient. If the field varies in time, then a series
of records is specified at different times. This list is used in other lists. For example,
let’s assume that the mechanical properties of a material are temperature dependent
and we have computed the temperature history and distribution. Then, the code would
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interpolate the temperature at the integration points, both in time and space. The scalar
field mesh and the finite element mesh do not need to be the same. However, the scalar
field mesh should contain all integration points of the finite element mesh. The input
commands for this list are:

TetSolidList ’listname’ ScalarField {

// define tet solid mesh using standard commands such as:

InsertNodeList { }

ReadObjects ’no.tets’

. . .

// enter list specific commands

NumberOfStates ’n’ // [1]

TimeUnits h // [2]

ReadDataFile ’filename’

PlotDataSet [3]

}

This list must be entered before it is used in other lists. In the example below, we define
a history for the humidity distribution in a volume of concrete in list Humidity . In
the LDPM list, the scalar field HumidityField is assigned to the state variable labeled
Humidity. Humidity.

TetSolidList HumidityField ScalarField {

. . .

}

TetSolidList ’listname’ Ldpm {

. . .

ScalarField TetList HumidityField StateVariable "Humidity"

. . .

}

The data file is an ASCII file with the following structure:

t(0)

f(0,1) f(0,2) f(0,3) ... f(0,nnd)

t(1)

f(1,1) f(1,2) f(1,3) ... f(1,nnd)

. . .

t(n)

f(n,1) f(n,2) f(n,3) ... f(n,nnd)

The function scalars f(t,i) must be separated by at least a space and can be written in
multiple lines. nnd is the number of nodes in the mesh:

[1] The number of states is used to read the first ’n’ datasets in the datafile. If
’NumberOfStates’ is missing or ’n’ is greater than the number of states in the datafile,
the program will stop when the eof is reached.
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[2] If the ’TimeUnits’ commands is missing, MARS assumes that times are given in
the default time units, which is typically seconds.

[3] The optional ’PlotDataSet’ command is used for generating a sequence of Quasar
contour plots for the field variable. The name of the files is the same as the name used
for the list. For example, if the list name is ’Temperatures’, the sequence of plot files will
be ’Temperatures.000’, ’Temperatures.001’, etc.

10.9 Generate Commands

The Generate command is used for generating tetrahedral meshes of simple geometries.
Within the Generate subsection a single or multiple parts can be generated. If multiple
parts are generated some nodes of these parts share the same locations, these nodes
can be merged using the t[mergeParts] command. The general format of the Generate

subsection is shown below:

TetSolidList NAME {

Generate {

// generate one or more parts using commands discussed below

. . .

// merge parts when distance between nodes is < tol

mergeParts 0.001 in // tol = 0.001 in

}

}

Cylinder

The Cylinder command is used for generating a regular tetrahedral mesh of a solid
cylinder or of a section of a pipe.

The following example generates a hollow cylinder with internal diameter of 2. in and
external diameter 2.31 in. The cylinder extends in the z- direction from z = 0.3 in to z =
19.52 in with 9 elements. The numbers 5 and 6 are used to control the curcumferential
mesh density: 5 x 6 = 30 nodes on the inside surface and 6 x 6 = 36 nodes on the outside
surface.

Cylinder { // use ingrid convention

5 6 ; 1 10 ;

2. 2.31 // radii

0.3 19.52 // coordinates in the axial (z) direction

}

A solid cylinder can be generated using the following commands.

Cylinder {

0 3 ; 1 20 ; // first index must be 0

0. 2. // first radius must be 0.

0. 20. // coordinates in the axial (z) direction

}
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Prism

The Prism command is used for generating a structured tetrahedral mesh of a paral-
lelepipedal shape.

/* Generate a prism with regular grid

Parallelepiped { // use ingrid convention

1 5 ; 1 3 ; 1 3 ;

-4. 4.

-2. 2.

-2. 2.

}

Extrusion

The Extrusion command is used for generating an extruded solid starting from a trian-
gular mesh defined in the x-y plane. The triangular mesh is extruded in the z-direction
starting from z = 0 and ending at z = Length with element dimension in the z direction
no larger than Increment.

Extrusion {

TriangularFaceList ’listName’

Length 10 in

Increment 1 in

}

Solid Disk

Disk { // use ingrid convention

0 6 7 ; 0 1 2 ;

0. 2. 2.31

0. 0.3 0.6

d 6 7 ; 0 ;

d 5 7 ; 1 ;

d 0 2 ; 2 ;

}

10.10 Ten-Node Tet Elements

The ten-node tet element is essentially a four-node tetrahedral element with six additional
nodes placed along the six edges of the element. Typically, the six nodes are placed at the
midpoint of the edge. However, if the edges are located on a curved external surface of a
part, the midpoint edges should be placed on the curved surface for improved geometric
definition.

The are two ways for defining a ten-node tet mesh: 1. define a four-node tet mesh and
then insert the mid-edge nodes, 2. generate a ten-node mesh using a commercial mesh

122



generation package and read the mesh directly into Mars. The first method employs the
following input format:

TetSolidList ’listname’ 10NodeElement {

// Define 4-node tet mesh using standard commands

InsertMidEdgeNodes

. . .

}

The second method employs this input format:

TetSolidList ’listname’ 10NodeElement {

InsertNodeList {

. . .

}

ReadObjects 45

1 n1-1 n1-2 n1-3 . . . n1-10 // [1]

2 n2-1 n2-2 n2-3 . . . n2-10

. . .

}

[1] The indexing system follows these rules:

• node 5 between nodes 1 and 2

• node 6 between nodes 2 and 3

• node 7 between nodes 3 and 1

• node 8 between nodes 1 and 4

• node 9 between nodes 2 and 4

• node 10 between nodes 3 and 4

Note that the 10NodeElement keyword in the first line is used for defining a purely
geometric mesh with no elasto-plastic properties. Ten-node finite element formulations
are listed below.

10.10.1 Ten-Node Small Deformation Element

The 10-node small deformation tet element formulation is intended to be used for cases
where the deformations are small. A good description of the 10 node tet formulation
is given in www.colorado.edu/engineering/CAS/courses.d/.../AFEM.Ch17.pdf. A nice
property of the T10 element is that it is not overconstrained nor underconstrained: it
features 10 nodes x 3 DOF/node = 30 DOFs in total, 4 integration points each providing
4 IP x 6 constrant/IP = 24 constraints, which leaves 6 unconstrained DOF’s: the six
rigid body motions. The formulation for small deformations save computing time by
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assembling the B-matrix only once at the beginning of the simulation, and by not rotating
the stress tensors at the integration points during the simulations, since rotations are
assumed to be small.

This formulation is invoked using the following commands:

TetSolidList ’listname’ 10NodeSmallDef {

Material ’materialName’

. . .

}

10.10.2 Ten-Node Large Deformation Element

The 10-node large deformation tet element formulation is similar to the small deforma-
tion formulation with two significant differences: 1. the B matrix is computed at every
step, and 2. the stress tensor is rotated to account for large rotations. The latter is
accomplished by attaching a local reference system (LRS) to each of the four integration
points. The orientation of the LRS is updated using the spin tensor. Strain rates com-
puted in the global reference system (GRS) are rotated to the LRS and used to update
the stress tensor. Note that the stress tensor is always defined in the local reference
system. The local stress tensor is then roated to the GRS and used to compute the nodal
forces.

This formulation is invoked using the following commands:

TetSolidList ’listname’ 10NodeLargeDef {

Material ’materialName’

. . .

}

11 Lattice Discrete Particle Model

The Lattice Discrete Particle Model (LDPM), is a discrete meso-mechanical model for
concrete, which was recently developed by Dr. Cusatis and co-workers at Rensselaer in
collaboration with Dr. Pelessone at ES3. LDPM simulates the mesostructure of concrete
by a three-dimensional assemblage of discrete particles whose position within the volume
of interest is generated randomly according to the given aggregate size distribution.
A three-dimensional domain tessellation, based on the Delaunay tetrahedralization of
the generated aggregate centers, generates a system of cells embedding the aggregate
particles and interacting through triangular facets. A mesoscale constitutive law governs
the interaction between adjacent cells and it simulates various features of the mesocale
response, including cohesive fracturing, strain softening in tension, strain hardening in
compression, material compaction due to pose collapse, frictional slip, rate and creep
effect for dynamics, etc.

LDPM has been extensively calibrated and validated in the last few years and it has
shown superior capabilities in reproducing and predicting qualitative and quantitative
concrete behavior under a wide range of loading conditions.
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LDPM was also used successfully to the simulation of projectile penetration, blast,
and fragmentation. Figs. 2a-g (Figures will be included in later version of the manual)
show a gallery of some of the results obtained using LDPM. Fig. 2a shows LDPM
simulation result for mixed mode fracture. The simulation is relevant to a four point
bending test of a specimen with two notches. As observed in experiments, two curved
fractures propagate from the notch tips towards the opposite sides of the specimens. In
Fig. 2b a snapshot of a blast simulation is shown. Fig. 2c is depicts the impact of a steel
rod onto a concrete block. As observed in reality the number of fragments increases with
the initial impact velocity and there is a transition from a failure with localized cracks
(left) to a failure with complete fragmentation (right). Fig. 2d shows the formation of
shear bands at failure for a specimen subjected to uniaxial compression. Fig. 2e presents
the LDPM model, damage distribution, and crater formation for a simulation of projectile
penetration through a reinforced concrete slab. The LDPM framework can also handle
coupling with steel reinforcement. The concrete-rebar bond model is obtained through a
penalty formulation that allows the simulation of nonlinear bond slipping. Fig. 2f shows
the simulation of a dynamic pull-out test leading to splitting failure. Finally, Fig. 2g
shows the LDPM capability of handling complex three-dimensional fracture paths with
multiple branching and crack coalescence.

Recently, LDPM was extended to include the effect of fiber reinforcing. The updated
formulation, named LDPM-F, incorporates the effect of fibers by modeling individual
fibers, placed within the LDPM framework according to a given fiber volume fraction.
The number and orientation of fibers crossing each facet is computed, and the contri-
bution of each fiber to the facet response is formulated on the basis of a previously
established micromechanical model for fiber-matrix interaction

Currently, LDPM-F is being applied to the simulation of the CORTUF concrete
developed by ERDC. Preliminary results clearly demonstrate the ability of LDPM to
model the micromechanical phenomena characterizing CORTUF failure

11.1 Input commands

TetSolidList ’listname’ LDPM {

// define tet solid mesh using standard commands such as:

InsertNodeList { }

ReadObjects ’no.tets’

. . .

// enter list specific commands

DisableFiberFacets { // [1]

FiberRadius 0.02 in

// enter either an EdgeList or BeamList

EdgeList ’FiberListName’

}

WriteStateVariableDumpEvery 0.010 ms // [2]

WriteCellDataDump ’fileName’ // [3]

WriteFacetDataDump ’fileName’ // [4]

ScalarField TetList ’listname’ StateVariable 17 // [5]

125



ScalarField TetList ’listname’ StateVariable "Temperature"

ScalarField HexList ’listname’ StateVariable 18

FacetScalarField { // [6]

InputFile ’filename’

StateVariable ’VariableName’

}

MassScaling // [7]

RotationalMassScalingFactor 10. // [8]

}

[1] The DisableFiberFacets command is used in conjunction with t[ParticleFiberInteractionList]
to disable LDPM facets, whose centers are located inside the fibers. The algorith com-
putes the minimum distance of each facet from all edges in the edge or beam list. If the
distance is less than the fiber radius parameter, then that facet is disabled and no longer
participates in the calculation. Following is an example of how to use it. Obviously, the
beam lists in the t[TetSolidList] and InteractionList should be the same, while the
fiber radius could be different.

BeamList Fibers { }

TetSolidList ’listname’ LDPM {

. . .

DisableFiberFacets {

FiberRadius 0.02 in

BeamList Fibers

}

}

ParticleFiberInteractionList BottomHalf {

. . .

BeamList Fibers

FiberRadius 0.02 in

}

[2] The WriteStateVariableDumpEvery command is used for generating a family of
ASCII files named LdpmStVarDump.xxxxxx at periodic time intervals. The xxxxxx string
is actually the time in microseconds; for example, LdpmStVarDump.001240 contains all
facet state variables at time 1.240 ms. Each file is structured in blocks of 13 lines, one
block for each Ldpm tet element. The first line contains the element index, the following
12 lines contain the state variables for the 12 facets.

[3] The WriteCellDataDump command is used for writing an ASCII output file con-
taining all information necessary to characterize the geometry of all the Ldpm cells in
the model. This file is printed once at the beginning of the simulation. The structure of
the output file is as follows

// For each cell

Cell jc // index of particle at the center of the cell
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// Coordinates of the center particle/node

crd: cx cy cz

// Total volume of cell

vol: V

// Number of outside points defining cell

nxp: np

// Local coordinates of outside points follow

x1 y1 z1

x2 y2 z2

. . .

// Number of facets internal to the solid and shared with other cells

nif: nf

// Facet connectivity and facet areas follow

j1t j1f i1.1 i1.2 i1.3 A1 n1.x n1.y n1.z

pA1 p1.x p1.y p1.z q1.x q1.y q1.z s1.x s1.y s1.z

j2t j2f i2.1 i2.2 i2.3 A2 n2.x n2.y n2.z

pA2 p2.x p2.y p2.z q2.x q2.y q2.z s2.x s2.y s2.z

. . .

where jkt is the index of the tet element that contains facet k,

jkf is the facet index (1-12) of the facet withing the tet element,

ik.1, ik2, ik.3 are the indeces of the outside points that define facet k,

Ak is the actual area of facet k

nk.x nk.y nk.z is the normal to facet k (not projected)

pAk is the projected area

pk.x pk.y pk.z is the normal to the projected face

qk.x qk.y qk.z is the first tangential direction

sk.x sk.y sk.z is the second tangential direction

// Number of facets on the external solid surface sharing center node

nxf: nf

// Facet connectivity and facet areas follow

// Index 0 refers to center node

i1.1 i1.2 i1.3 A1

i2.1 i2.2 i2.3 A2

. . .

// Total number of edges in the cell

nxe: ne

// Edge connectivities and edge lengths follow

i1.1 i1.2 L1

i2.1 i2.2 L2

. . .

where ik.1, ik2 are the indeces of edge k,

Lk is the length of edge k

[4] The WriteFacetDataDump command is used for writing an ASCII output file contain-
ing all information for the 12 facets of each tetrahedral LDPM element. The output data
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is structured as follows:

For each tet

Tet ’index’

followed by 24 lines, two for each facet

n1 n2 cx cy cz fa nx ny nz

pa px py pz qx qy qz sx sy sz

where:

n1: index of first node on facet edge

n2: index of second node on facet edge

cx, cy, cz: coordinates of facet center

fa: area of facet

nx, ny, nz: normal to facet

pa: projected area (used in calculations)

px, py, pz: normal to projected facet

qx, qy, qz: first tangential direction

sx, sy, sz: second tangential direction

Note the node indeces n1 and n2 are also the cell indeces.
[5] The ScalarField command is used for specifying a time dependent spatial scalar

field, such as temperature, humidity, etc. The scalar field is actually specified in a
separate list, which must be entered prior to the definition of the current Ldpm list. For
details on how to enter a scalar field list, see specific sections of the manual. The meshes
for the scalar field and for the LDPM model can be different; indeed, one can use either
a tetrahedral solid mesh or an hexahedral solid mesh. The scalar field is interpolated
at the center point of the facets of the LDPM model. Furthermore, the values at the
facets are interpolated in time. The interpolated scalar is assigned to the state variable
specified in the command. The state variable can be identified either by its index or its
description, as it appears in the material state variable table. Note that the material
model must be designed to accomodate the specified state variable.

[6] The FacetScalarField command is used for specifying a time dependent scalar
filed (see above) directly at the facets. The data is read from an input file that has the
following format:

t1

f1-1-1 f1-1-2 ... f1-1-12

f1-2-1 f1-2-2 ... f1-2-12

. . .

t2

f2-1-1 f2-1-2 ... f2-1-12

f2-2-1 f2-2-2 ... f2-2-12

. . .

where

ti: is the time for the i-th record

fi-j-k: is the value of the scalar field for j-th element,

k-th facet, i-th record.
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The values of the scalar at the facets are interpolated in time. The interpolation time is
the time when the forces are calculated. Up to 10 scalar fields can be specified.

[7] The MassScaling command is used to increase the mass of elements that have
very small Courant time steps. Typically, in large meshes there are a few poorly shaped
elements (slivers, flat elements, etc.) that would force the entire simulations to run using
small integration time step. It is a common practise to increase the density of these
elements, because their mass is very small anyway. The time steps for Ldpm elements is
computed by assemblying the stiffness matrix and computing its maximum eigenvalue e.
The time step dt is then defined as

dt = 2.

√
1.

e

These operations are performed during the initialization phase. A summary of these
operations is printed to the output file and looks like this:

Min. time step for stability: 808.24e-9 s

510 tets were made heavier

Current min. time step : 1000.00e-9 s

Actual total mass : 0.914831 kg

Adjusted total mass : 0.924320 kg

Percent mass increase: 1.03727%

Note that the operations for computing the time steps are quite expensive but need to
be done only once. Since Oct. 2011, the stable time steps for all elements are auto-
matically computed and saved to a binary file named using the following convention
ttL-’listName’.cts. The next time the same model is run, Mars looks for this file and
reads the previously saved time steps. Since Oct. 2011, Mars performs further checks to
ensure that the .cts file corresponds to the current model: first it checks that the number
of elements is the same, then it computes the stable time step for the first element and
compares it with the value in the file. If either test fails, Mars automatically deletes
the .cts file and exits with an error message prompting the user to resubmit the job.
If MassScaling is not used, the minimum time step for the Ldpm list is used in the
computation of the global integration time step.

[8] The RotationalMassScalingFactor command is used to increase the rotational
mass of all LDPM node by the prescribed scaling factor, which should be greater than
1. This is typically done when the stability of the element is controlled by the rotational
DoF’s. In general, there is no loss of accuracy when the rotational DoF’s are made
heavier.

11.2 Model Generation

Because of the unique requirements of LDPM models, a series of special purpose of mesh
generation methods are made available. The generation methods used to be embedded
in a tet or hex solid list. Since Feb 22, 2013, these methods have been moved to a special
purpose class named LdpmModelGenerator . The new input looks like this:

129



LdpmModelGenerator ’Name’ {

Material ’materialName’

Seed 34565

// choose one of the ’Generate’ options

GeneratePrism { . . . }

GenerateCylinder { . . . }

GenerateSphere { . . . }

GenerateFromFineTetMesh { . . . }

GenerateFromHexMesh { . . . }

[ PlotMesh ]

[ ExamineMesh ]

WriteLdpmMeshFile ’filename’

}

11.2.1 Prism

The GeneratePrism command is used for generating an LDPM concrete parallelepipedal
box. This method first generates points along the edges of the box, then points on the
faces of the box. It then randomly places a set of particles inside the box. It uses tetgen
to generate a tetrahedral mesh. The method selects an appropriate mesh density for the
exernal mesh based on expected average distance between internal particles.

LDPM Model Generation. Prism

//----------------------------------------------------------------------

ControlParameters {

Units CGS

}

//----------------------------------------------------------------------

Material CONC LDPM {

MixDesign {

CementContent 789.1 kg/m3 //with fibers

WaterToCementRatio 0.2082

AggregateToCementRatio 1.9432 //with air

MinAggregate 3 mm

MaxAggregate 4 mm

FullerCoefficient 0.5

}

}

//----------------------------------------------------------------------

LdpmModelGenerator PRSM {

Material CONC

Seed 34565

//DebugPlot

GeneratePrism {

Dimensions 4 in 2 in 8 in [1]
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ConstantSpacedParticlesOnEdges

[ Split ] // [2]

MaximumIterations 40000 // default 10000

}

[ PlotMesh ] // [3]

[ ExamineMesh ]

WriteLdpmMeshFile prism.mrs

}

Quit

EOF

[1] The box spans from 0 to 4 in in the x-direction, from 0 to 2 in in the y-direction, and
from 0 to 8 inches in the z-direction.
[2] The Split command is used to split the mesh into two part accros a plane perpendic-
ular to the x-axis between minimum and maximum x. This is useful to see the internal
composition of the mesh and the LDPM particles. Don’t use this command when writing
out the mesh to an external file
[3] The PlotMesh command generates a Quasar plotfile of the external faces of the mesh
and the internal particles.

11.2.2 Cylinder

The GenerateCylinder command is used for generating an LDPM concrete cylinder.
This method first generates an external triangular face mesh representing the surface of
the cylinder. It then randomly places a set of particles inside the cylinder. It uses tetgen
to generate a tetrahedral mesh. The method select an appropriate mesh density for the
exernal mesh based on expected average distance between internal particles.

LDPM Model Generation. Cylinder

ControlParameters { ... }

Material CONC LDPM { ... }

LdpmModelGenerator CYLN {

Material CONC

Seed 34565

//DebugPlot

GenerateCylinder {

Radius 5 cm

Length 10 cm

Resolution 5

[ Split ]

}

[ PlotMesh ]

[ ExamineMesh ]

WriteLdpmMeshFile cyl.mrs

}
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Quit

EOF

11.2.3 Sphere

The GenerateSphere command is used for generating an LDPM concrete sphere. This
method first generates an external triangular face mesh representing the surface of the
sphere. It then randomly places a set of particles inside the sphere. It uses tetgen to
generate a tetrahedral mesh.

LDPM Model Generation. Sphere

ControlParameters { ... }

Material CONC LDPM { ... }

LdpmModelGenerator SPHR {

Material CONC

Seed 34565

//DebugPlot

GenerateSphere {

Radius 5 cm

Refinement 3

[ Split ]

}

[ PlotMesh ]

[ ExamineMesh ]

WriteLdpmMeshFile sphere.mrs

}

Quit

EOF

[1] The argument of the Refinement parameter is an integer that represents the level
of refinement of the external mesh. For a value of 1 (lowest resolution) the sphere is
approximated with an octahedron. For each increment, each triangle is subdivided into
four triangles making the mesh finer. The level of resolution should be consistent with
the internal mesh. This can be visually checked using the Split command, which makes
it possible to split the sphere in two parts across the middle and look at its interior

11.2.4 Using fine tet mesh

The GenerateFromFineTetMesh command is used for generating an LDPM mesh starting
from an arbitrary tetraedral element mesh. The basic idea is to use the external faces
of the tetrahedral mesh and discart the internal nodes. MARS uses the volumetric
description of the mesh to insert LDPM particles in its interior. External facets and
internal particles are passed to tetgen that creates a new LDPM tetrahedral mesh. It is
important to choose a discretization level that is consistent with targeted dimension size
of the desired LDPM tetrahedral mesh.
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LDPM Model Generation. From tet mesh

ControlParameters { ... }

Material CONC LDPM { ... }

TetSolidList Prism Geometry {

// Enter mesh using standard read commands (see TetList section)

// or generate mesh

Generate {

Parallelepiped {

1 17 ; 1 9 ; 1 9 ;

-4. 4.

-2. 2.

-2. 2.

}

}

}

LdpmModelGenerator MODL {

Material CONC

Seed 34565

GenerateFromFineTetMesh {

TetList Prism

}

WriteLdpmMeshFile cube.mrs

}

Quit

EOF

11.2.5 Using fine hex mesh

The GenerateFromFineHexMesh command is used for generating an LDPM mesh start-
ing from an arbitrary hexahedral element mesh. The basic idea is to use the external
quadrilateral faces of the hexahedral mesh, split them intro triangular faces, and discart
the internal nodes. MARS uses the volumetric description of the mesh to insert LDPM
particles in its interior. External facets and internal particles are passed to tetgen that
creates a new LDPM tetrahedral mesh. It is important to choose a discretization level
that is consistent with targeted dimension size of the desired LDPM tetrahedral mesh.

LDPM Model Generation. From hex mesh

ControlParameters { ... }

Material CONC LDPM { ... }

HexSolidList Cube Geometry {

Generate {

Block {

Dimensions 10 cm 10 cm 10 cm

Elements 10 10 10

}
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}

}

LdpmModelGenerator MODL {

Material CONC

Seed 34565

GenerateFromFineHexMesh {

HexList Cube

[ Examine ]

[ Split ]

}

WriteLdpmMeshFile cube.mrs

}

Quit

EOF

11.2.6 Using coarse hex mesh

Unlike the previos generation scheme, GenerateFromCoarseHexMesh starts from a coarse
mesh. It has several limitations. First, external surfaces have to be perpendicular to each
other. The method finds the sharp edges and main vertices. It places LDPM boundary
nodes at the vertices. Then it places boundary nodes along the edges, either randomly
or at regular intervals. Third, it places nodes on the external surfaces in a random
pattern. Finally, it places LDPM particles inside the volume. The data is sent to tetgen
for tetrahedral mesh generation. Since the external surfaces are not prescribed, tetgen
meshing may not be sucessful. This is particularly true if the surfaces are not exactly
perpendicular to each other.

LDPM Model Generation. From hex mesh

ControlParameters { ... }

Material CONC LDPM { ... }

HexSolidList Cube Geometry {

Generate {

Block {

Dimensions 10 cm 10 cm 10 cm

Elements 1 1 1

}

}

}

LdpmModelGenerator SPHR {

Material CONC

Seed 34565

//DebugPlot

GenerateFromCoarseHexMesh {

HexList Cube

Split
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[ MaximumIterations 40000 ] // default 10000

}

PlotMesh

//ExamineMesh

WriteLdpmMeshFile cube.mrs

}

Quit

EOF

11.2.7 DogBone Specimen

The GenerateDogBoneSpecimen command is used for generating an LDPM model of
certain type of dog-bone specimens. A rough sketch is shown below.

// - ***************

// | * *

// | * *

// | ** **

// | * *

// - * *

// H L * *

// * *

// | - * *

// | * *

// | ** |-- D --| **

// | * *

// | * *

// - ***************

// |----- W -----|

LdpmModelGenerator ’DogBone’ {

Material Concrete

Seed 5405

GenerateDogBoneSpecimen {

W 100 mm // total width of the specimen

H 100 mm // total height of the specimen

D 40 mm // width of the restricted section

L 10 mm // height of the restricted section

T 60 mm // thickness of the specimen

[h 5 mm] // characteristic length of the surface mesh

[Split] // split the mesh in half to see interior

}

}

The parameter L can be zero. In this case the throated section is a complete half circle.
If the parameter h is not specified, then it is internally computed using the formula

h = 1.50 * minAggregateDiameter.
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11.3 Time Histories

The LDPM elements employ the same time history commands as the regular tetrahedral
element. The only additional feature is the ability to plot state variables at any of the
twelve facets.

tt-’listName’ ’jt’ Facet ’jf’ StateVariable ’jsv’

where jt is the index of the Ldpm element, jf is the index of the facet (1 through 12),
and jsv is the index of the state variable.

11.4 Using Pre-Generated Meshes

The typical way of performing LDPM simulations is to first generate a LDPM mesh of the
specimen or component using one of the techniques described in the previous section and
then to create a full model which employs the mesh generated earlier. In the generation
phase, the mesh is saved using the Write PartMeshDataFile command. The data file
has the following structure

InsertMaterial CONC LDPM { . . . }

InsertNodeList PRTC { . . . }

ReadObjects ’n’

// element connectivity

EOF

Note that unlike other mesh datafiles, the LDPM datafile includes commands for defining
the material object that was used to size and distribute the LDPM particles.

In older versions of Mars, it was possible to define a concrete material model before
the TetSolidList is defined and use it in the TetSolidList in this fashion

Material Concrete LDPM { . . . }

TetSolidList ’ListName’ LDPM {

Material Concrete

ReadFile specimen.mrs

. . .

}

In this input scenario, the InsertMaterial command in file specimen.mrs would have
replaced the externally defined material Concrete with the material saved in the datafile.
The user would have been unaware of that. Since May 26, 2011, this is no longer possible.
In the current version, an error trap has been placed and the material can only be defined
once.

It is possible to change material parameters inside the TetSolidList using the
EditMaterial command

It is possible to change material parameters inside the TetSolidList using the
EditMaterial command
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TetSolidList ’ListName’ LDPM {

ReadFile specimen.mrs

EditMaterial {

// use standard input commands to edit LDPM material parameters

}

}

11.5 Stable Element Time Steps

Stable time steps for each LDPM element need to be computed to ensure that the time
step used in the solver is small enough to avoid local (or global) instabilities during the
simulation. The computation of the Courant stability time step for an LDPM requires
the assembly of the element stiffness matrix (24x24 size) and the solution of its largest
eigenvalue. As such, this is a computationally expensive operation. Unlike ductile steel
materials, concrete material do not experience significant plastic deformations before
fracturing. Thus, the geometry of LDPM elements remain fairly constant during sim-
ulations and there is no need to recompute stable time steps. The computation of the
stable time steps is only done once at the beginning of the simulation.

Furthermore, logic has been placed so that stable time steps are saved in a file named
ttL-ListName.cts. As of April 2012, when MARS initializes an LDPM list, it first looks
for the cts file in the current folder. If it finds it, it will try to use the steps computed
in a previous simulation. Two checks are performed to ensure that the data is usable:
1. the number of elements in the list must be the same as the number of time steps in
the cts file, 2. the computed time steps for the first ten elements in the list must be
the same as the values of the time steps in the cts file. The second check is intended
to account for conditions when the elastic properties of the material are changed during
the calibration process. If either condition is not satisfied, then the time steps for all
elements are recomputed and saved to the cts file, possibly overwriting previous data.
This activity is documented in the output file as shown in the example below.

Initializing list ttL-PRTC

Element time steps read from file ttL-PRTC.cts

Time steps in *.cts are not usable (properties may have changed)

Stable element time steps are recomputed.

Min. time step for stability: 316.32e-9 s

Time steps saved in file ttL-PRTC.cts

Unlike previous versions of MARS, where the cts file had to be explicitely deleted by
the user to eliminate errors during execution, the current version of MARS does all the
operations automatically and the process is transparent to the user. It is still a good idea
to periodically check the output and see what operations are performed.

11.6 LDPM Visualization

There are essentially two classes of methods for visualizing LDPM models: tet-based
methods and cell-based methods. Tet-based methods were the first to be implemented.
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Cell-based methods require more memory for storing additional data but provide more
realistic erenderingentations of the cracking process; their additional computational cost
is insignificant. Tet-based methods are no longer discussed in this manual as they generate
lower quality graphical representations. Cell-based methods and various applications are
discussed below.

Cell plot rendering provides a more realistic representation of the fracturing process
for two reasons: material does not disappear and cracks are clearly visible. The idea
behind this rendering is to plot visible faces from all cells of a model. Since it would
be computationally very expensive to plot all internal facets; MARS checks the value
of the crack opening and if it exceeds an input value, it assumes that a large enough
crack has formed and both faces of the facets are plotted. All external facets are always
plotted. Facets edges are also plotted when the internal facets are plotted. Figure 4
shows a fractured brick. The relevant input for this example is listed below. Currently,
the parameter to control plotting of cracked surfaces is specified inside the TetSolidList
and is defined by the keyword CrackOpening. A cell plot of an LDPM model can be
requested inside a PlotList with the command ttL Brick { Cells }. Since July 2011,
the definition of the crack opening parameter can be made inside the plot lists using the
command MinimumCrackOpening. Notice that the level of detail in crack displaying can
be controlled by varying the value of the crack opening parameter. Making that value
too small may make the plot too busy.

Most plotting capabilities are available for both Quasar and Paraview. Quasar will
not work reliably and efficiently for very large models, but it will display a final image
very quickly (when it can) since it does not require a long set-up procedure. Paraview
provides great capabilities for changing properties and attributes of graphical components
and can process very large models. Unlike Quasar which combines components in a single
files, Paraview requires graphical components to be specified in different families of files.
As such, the way PlotLists are specified for the two codes is different. For example, if
we want to generate a contour plot of external facets in solid color and contour plot of
crack opening for the internal facets, the Quasar input would be set up using a single
PlotList

PlotList CrackOpening {

TimeInterval .01 ms

ttL Tile { ExternalCellFacets }

ttL Tile {

FacetVariable 15

MinimumCrackOpening 0.01 mm

RangeMinValue 0.01 mm

RangeMaxValue 0.1 mm

}

}

while the input for for Paraview must be broken up into two separate PlotLists

PlotList TileExtFaces {

138



Paraview

TimeInterval .01 ms

ttL Tile { ExternalCellFacets }

}

PlotList Contours {

Paraview

TimeInterval .01 ms

ttL Tile {

FacetVariable 15

MinimumCrackOpening 0.01 mm

RangeMinValue 0.01 mm

RangeMaxValue 0.1 mm

}

}

11.6.1 Plotting cell facets

The Cells plot option makes it possible to combine external and internal cell facets into
a single triangular face list. As discussed earlier, the visibility of the internal facets is
controlled by the MinimumCrackOpening parameter. Decreasing this parameter makes
the number of internal facet larger slowing down their rendering.

PlotList ’Name’ {

. . .

ttL ’ListName’ {

Cells

MinimumCrackOpening 0.01 mm

}

}

This plotting method is available for both Quasar and Paraview.

11.6.2 Plotting external facets only

A variation of Cells method makes it possible to plot only the cell triangular facets that
are initially visible. Essentially, these are the external facets of the tet mesh which are not
shared by two adjacent cells. The number of facets in this list does not change during the
simulation. I can be used for quickly assessing the progress of a simulation or for coupling
with with facet contour plots and displaying the external surface in a neutral color since
they are not part of the contour facet list. The command for displaying external faces is
is

ttL ’ListName’ { ExternalCellFacets }

This option is available for both Quasar and Paraview.
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11.6.3 Plotting cell outline

If the option of displaying sharp edges is required, the command CellOutline creates a
list of edges that are visible. The initial list would include the sharp edges of the initial
mesh. As the Lpdm model breaks up, the edges of the cells that have separated from
the bulk of the model, may be displyed depending on the angle of the facets sharing an
edge. edge.

ttL ’ListName’ { CellOutline }

The line lists generated using the CellOutline command can become very large and the
plot may show too many edges. In these cases, it is preferable to display only the initial
sharp edges of the model in their current location. This is accomplished by the command
CellInitialOutline

ttL ’ListName’ { CellInitialOutline }

11.6.4 Plotting particles

This feature provides the capability of plotting particles as spheres. It is no different
than the plotting option available for standard NodeLists.

ttL ’ListName’ { Particles }

This option is available for both Quasar and Paraview.

11.6.5 Plotting stress tensor components

This feature provides the capability of computing equivalent stress tensors at the centers
of LDPM cells and generating contour plots of each stress component at the tet level
mesh. This is useful for comparison with finite element results. This representation
is meaningful for small deformations and requires careful interpretation when concrete
starts to crack. Stress tensor contour plots are available for both Paraview and Quasar,
but the commands are slightly different. In Paraview, all six stress tensor components
are written to the output file when the keyword StressTensor is used:

PlotList ’listname’ Paraview {

. . .

ttL ’tetListName’ { StressTensor }

}

Note the the Paraview data is done at the solid tet level and it is possible to generate
section plots of the part.

In Quasar, you must select one of the six-components. Even though it is possible to
include two or more components in the same plot-list, this is not recommended, because
they would overlap in Quasar.
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PlotList ’listname’ Paraview {

. . .

ttL ’tetListName’ { XX-Stress }

ttL ’tetListName’ { YY-Stress } // optional

}

The remaining variables are: ZZ-Stress, YZ-Stress, ZX-Stress, and XY-Stress.
You can use the CellOutline option to display the outline of the part including

possible cracking patterns. Two plot lists for Paraview and a single plot list for Quasar.

PlotList ’listname1’ Paraview {

. . .

ttL ’tetListName’ { StressTensor }

}

PlotList ’listname2’ Paraview {

. . .

ttL ’tetListName’ { CellOutline }

}

PlotList ’listname3’ Quasar {

. . .

ttL ’tetListName’ { XX-Stress }

ttL ’tetListName’ { CellOutline }

}

11.6.6 Plotting embedded fibers

If the component contains embedded fibers, these can be plotted using the command
Fibers

ttL ’ListName’ { Fibers }

This option is available for both Quasar and Paraview.

11.6.7 Contour plotting of facet variables

This plotting feature provides the ability to display state variable information at the
facet level. As for the Cells plot, the total number of facets can be very large. For this
reason, there are options for reducing the number of facets included in the facet list, which
are eventually plotted. The variable to be plotted is selected using the FacetVariable

keyword followed either by the variable index or the variable label. These can be chosen
from the list of state variables for the material being used. The first level of filtering
is obtained using the command MinimumCrackOpening which works in the same fashion
as in the Cells plot. In addition, if a variable range is specified using either or both
RangeMinValue and RangeMaxValue, then the facets for which the variable is outside the
range are removed from the list.
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ttL Block {

FacetVariable 15 // crack opening variable

MinimumCrackOpening 0.01 mm

Scale 1000 // convert from m to mm

// do not use next four options for paraview plots

RangeMinValue 0.01 mm

RangeMaxValue 0.10 mm

DisplayBelowMin

DisplayAboveMax

}

The last four options would not work for Paraview plots, since that functionality is
obtained in Paraview in the ObjectInspector > Display > EditColorMap form and using
the threshold filter.

11.6.8 Contour plotting of facet variables using solid geometry

This plotting feature is similar to the previous one, but it works in Paraview only. The
main difference is that the Paraview cells consist of solid tetrahedral elements instead
of facets. This makes it possible to take cross sections in Paraview and display state
variables across the cutting planes. Output files for this option are even larger that for
the previous one, since each LDPM tetrahedron spawns 24 facet tetrahedra and all state
variables are automatically saved. The input command is:

ttL ’ListName’ { StateVariables }

11.6.9 Not displaying small fragments

In highly dynamic situations, such as high velocity impacts, it is possible to generate a
large number of small fragments, most of them the size of a single cell. This corresponds
to the dust/debris cloud observed in real tests. Since we cannot continue the simulation
until all small fragments disappear from the picture, it is at time desirable not do render
the smaller fragments, at least in some plot file sequences. This can be accomplished
using the MinimumFragmentSize command.

PlotList ’Name’ {

...

ttL Block {

Cells

MinimumFragmentMass 5 g

// fragments lighter than 5 grams are not displayed (optional)

MaximumFragmentMass 500 g

// fragments heavier than 500 grams are not displayed (optional)

}

}
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Note that there is an additional command MaximumFragmentSize that puts an upper
bound to the fragment or chunks of concrete to be displayed. Although this option may
not be as useful, it was easily implemented in MARS and for this reason it was made
avaialable.

11.6.10 Domain decomposition plots

The following example shows the commands for generating a Paraview file which contains
the exploded view of a tet-list depicting the domain decomposition. The parameter 1.3
controls the amount of radial motion for the domains. The coordinates of the center of
gravity of each domain are multiplied by this parameter. A value of 1. means the com-
ponents stay where they are. The larger the value of this parameter, the more ’exploded’
the view looks. Results are in file DomainDecomposition.000.vtu. The domains may be
painted using the scalar variable Domains .

PlotList DomainDecomposition {

Paraview

TimeInterval 100. s

ttL Tile {

DomainDecomposition 1.3

}

}

11.6.11 Summary of plotting options

A complete list of available options is shown below

PlotList ’Name’ {

...

ttL Block { ExternalCellFacets }

ttL Block { Cells MinimumCrackOpening 0.01 mm }

ttL Block { CellOutline }

ttL Block { Particles}

ttL Block {

FacetVariable 2

// range parameters are specified after contour or facet

// variable is selected and must have the units of the

// variable

RangeMinValue 5 psi

RangeMaxValue 1000 in/s

// facets outside range are not displayed unless

[ DisplayAboveMax ] // facet above max are display in red

[ DisplayBelowMin ] // facet below min are display in blue

}

ttL Block { StressTensor } // paraview only

ttL Block { XX-Stress [YY- ZZ- YZ- ZX- XY-Stress } // quasar only
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ttL Block { SolidCells } // paraview only

ttL Block { Slice } // quasar only

ttL Block { DomainDecomposition 1.3 } // paraview only

}

11.6.12 Parallel processing with Paraview

The MARS plot generating procedures for Quasar and Paraview are very different.
Quasar expects a single input file; as such, the contributions to each list from the various
processes must be combined in MARS. Paraview can read and combine files generated
from different processes. This eliminates the need to combine large data sets in rank zero
process, which could lead to memory requirement problems. The Paraview files have the
following name convention ’plotListName’.nnn.ppp.vtu, where nnn is an integer rep-
reseting the sequential time frame and ppp is a three-digit integer representing the rank
of the process that generated the file. In addition to these files, there is an additional
file name ’plotListName’.pvd that contains direction for Paraview on how to load and
combine the previous files. This is one of the files that shows up in the Paraview Open
window, and it is the one that should be selected.

11.6.13 Other examples

The following example shows the commands for generating facet contour plots of the inter-
cell gaps for half of the model while eliminating the small fragments. (The elimination of
the small fragments is optional.) The external faces of half of the tile are also generated
in a separate list. The external faces are supposed to be displayed in gray or any neutral
color, where the facets are to be displayed in color.

TetSolidList Tile {

EditNodeList {

Select cx > 0. in

SaveSelectione HalfTile

Select all

}

}

PlotList ExtrnCells {

TimeInterval 0.01 ms

Paraview

ttL Tile {

ExtCellFaces

MinimumFragmentMass 1.e-6 lb-s2/in

LoadNodeSelection HalfTile

}

}

PlotList Cntr {

Paraview

TimeInterval 0.01 ms
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ttL Tile {

FacetVariable "Total crack opening"

RangeMinValue 0.10 mm

RangeMaxValue 0.3 mm

DisplayAboveMax

MinimumFragmentMass 1.e-6 lb-s2/in

LoadNodeSelection HalfTile

Scale 1000

}

}

11.7 Embedded Fibers

Fibers of various types are used in construction materials to enhance durability, strength-
to-weight ration, ductility, energy absorption capability, etc.In the context of LDPM,
fibers-concrete interaction is explicitly modeled at the micro scale level by including the
mechanical effect of fiber interaction at the facets where fiber-facet intersection occurs.
The distribution of fiber-facet intersection is accomplished by generating distributions of
fibers similar to actual distributions found in real specimens. From a geometric point
of view, physical fibers can be described using few parameters: fiber density, length,
diameter, and tortuosity. The latter parameter is used to characterize how bent fibers
are: a straight fiber has no tortuosity while a fiber with many kinks is very tortuous.
These geometric parameters are used in MARS for generating random fibers inside a
control volume, which can either be the volume of the concrete part or a larger volume
that contains the concrete part. Each fiber is model using a sequence of one or more
segments linked together. Single segments are sufficient for generating straight fibers.
Multiple segments are necessary for generating tortuous fibers. Fiber location and ori-
entation is random. All fibers are completely contained in the control volume. For cast
fiber-reinforced concrete parts, the control volume should be equal to the volume of the
concrete part. For machined parts, the control volume should be larger than the part.
The fibers that intersect the external surface of the part are treated as cut. The portion
of a cut fiber which lays inside the part is shorter than the length of original fiber and
this affects the mechanical characteristics of the fiber-facet interaction of the facets near
the external surfaces. In the spirit of the discrete multi-scale physical character of the
LDPM, the occurrences of fiber-facet intersections are determined by actually computing
the locations where fibers cross inter-cell facets. This computation can require signifi-
cant resources for large models in term of both time and memory. For this reason, an
efficient bin-sorting algorithm was developed for computing these intersections. For each
intersection, the lengths of the fiber on both sides of the facet and the angle at which
the fiber intersects the facet are also computed. These parameters are saved in the facet
data structure and used during the simulation for computing the incremental force effect
of the fiber on the structural response of the concrete.

TetSolidList ’ListName’ LDPM {

. . .
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EmbeddedFibers {

FiberConcreteInteraction ’ModelName’

GenerateFibers {

FiberLength 10. mm

ElementSize 2. mm // Obsolete; use EdgesPerFiber

EdgesPerFiber 5

// Specify either fiber diameter, radius or area

FiberDiameter 0.2 mm

FiberRadius 0.1 mm

FiberSectionArea 0.0314 mm2

// Specify either NumberOfFibers or VolumeFraction

NumberOfFibers 10000

VolumeFraction 0.02

Tortuosity 0.2

Seed 345

[ PreferentialDirection ’nx’ ’ny’ ’nz’ ’scale’ ] // [1]

[ Chopped ]

[ Prism ] // [2]

}

}

}

[1] This command is used when fibers are mostly oriented in a specific direction. The
scale number is used to control how strong the orientation is. For a scale equal to 1.,
there is no preferential direction. For a scale equal to 10., a fiber is ten times more likely
to be oriented in the given direction than to a direction orthogonal to it. The best way
to set this parameter is to generate fiber distributions and compare them visually against
available data.

The GenerateFibers command creates a new edge list automatically named Fibers.
For this reason, it is important to avoid naming other edge lists with the word Fibers.
This list can be later operated on using standrard procedures. For example:

TetSolidList ’ListName’ LDPM {

. . .

EmbeddedFibers {

GenerateFibers {

. . .

}

}

}

EdgeList Fibers {

Rename ’SteelFibers’

Write PartMeshDataFile ’fibers.mrs’

Color red

}
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[2] The Prism option was added in June 2012 to address some performance issues for
models with large number (in the millions) of fibers. It is not a new parameter, rather
it is a flag to activate a new generation method. The default method uses the following
procedure:

• Fibers are generated during the Reading phase and saved to an EdgeList named’Fibers’

• The generation method employs the tetrahedral mesh for ensuring that the fiber is
entirely or partially contained in the concrete

• For chopped fibers the method finds the intersection of edges against the external
facets of the tetrahedral mesh

• In the initialization phase, the fiber EdgeList is used for computing the intersection
of the fibers themselves with the Ldpm facets.

• Fibers are not used as structural elements during the simulation

The procedure above works well for medium size fiber systems (less than a million).
When the number of fibers is in the millions, the procedure is very slow because of all
the check it has to perform. Furthermore, storing a large number of edges and nodes,
which are not used in the calculation, wastes a significant amount of memory.

Since most of the FRHSC specimens so far encountered have a parallelepipedal shape
and the edge list does not have to be stored, the new modified procedure can solve
fiber-concrete interaction more effectively for prismatic geometries. The new procedure
consists of:

• Fibers are temporarily generated during the initialization phase for the sole purpose
of computing fiber-facet intersections

• The geometry is assumed to be a parallelepipedal prism aligned with the axis, this
simplifies the computations of the edge locations and intersections with external
surfaces,The logic is MPI parallelized: while all the processes generate exactly the
same fibers based on the seed number, each process will consider only the fibers
overlapping its domain.

Output for the new procedure appears in the initialization phase:

Initializing concrete-fiber interaction

Number of fibers 53760

Number of edge segments 191612

Total fiber length 1.38e+3 m

Fiber volume 327.69e-6 m2

Number of fiber-facet intersections 526449
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11.8 Fragment Characterization

The LDPM approach makes it possible to introduce and evolve discrete cracks in concrete
parts. Under extreme loading conditions, crack coalesce and propagate leading to the
formation of discrete fragments consisting of a single or multiple LDPM cells. MARS
implements an algorithm that checks the connectivity between cells and determines when
two adjaced cells are no longer connected. Based on cell connectivity, the algorithm
determines the number, shape, mass, and velocity of all generated fragments at a given
time during the simulation.

This ’fragment characterization task’ is executed using the command FindFragments.
Because this task is performed later in the simulation when the concrete part has broken
up in multiple fragments, the input setup consists of additional commands in the standard
input file and an additional input file with the FindFragments commnad. The standard
input file must contain a ReadFile line in the ControlParameters section for scheduling
processing of the additional input file. In the example below, the additional input file is
named frags.mrs.

Title: File masterInput.mrs

ControlParameters {

. . .

ReadFile frags.mrs atTime 3. ms

ReadFile frags.mrs atTime 6. ms

}

TetSolidList SLAB LDPM {

. . .

}

. . .

EOF

The listing for file frags.mrs is shown below

Title: Input for computing fragment distributions

TetSolidList SLAB {

FindFragments

}

EOF

Results are saved in two files: fragsXXXXXX.out and fragsXXXXXX.th, where XXXXXX is
the time in microseconds.

File fragsXXXXXX.out is an ASCII file containing mass, coordinates, velocities of the
fragments in this format:

m1 cx1 cy1 cz1 vx1 vy1 vz1

m2 cx2 cy2 cz2 vx2 vy2 vz2

. . .

mN cxN cyN czN vxN vyN vzN
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where N is the number of fragments. This file should be used for post-processing.
File fragsXXXXXX.th has the format of a time history file, the first variable is ’Frag-

ment mass’ (FM), the second variable is ’Cumulative mass fraction’ (CMF), the third
variable is ’Cumulative kinetic energy fraction’ (CKEF). These data are intended solely
for generating CMF versus FM and CKEF versus FM curves. These curves have a
staircase appearance. Do not use this file for post-processing.

Warning: if the part has not broken up into two or more fragments, then the two
output files are not generated. Look at the run output to check how many fragments are
computed.

11.9 Extended LDPM Framework

Over the last few years (2010-2014), there have been several projects that required the
inclusion of special mechanisms in the LDPM formulation, such as ASR effects, ther-
mal strains, creep, shrinkage, etc. These special mechanisms used to be implemented in
MARS by creating modified versions of existing classes, such as modified material models
and modified LDPM tet lists, etc. This resulted in the proliferation of special purpose
classes, which could not be merged into an integrated system. Essentially, these features
could be used effectively only by the analysist that had worked on them. To overcome
these limitations we have designed an LDPM framework which provides student and re-
searchers with a blueprint for implementing new features, accomplishing the goals stated
below.

The main objectives of the extendended LDPM framework are to make it possible to
expand the capabilities of the LDPM methodology in a seamless way. The requirements
for that can be itemized as follows:

1. Ldpm tet element formulation must remain unchanged (this has not been a problem
in the past)

2. Tet LDPM tet list class must remain unchanged

3. The new extended LDPM material model class must remain essentially unchanged

4. The new features must be implemented in a modular fashion.

We have found a solution that accomplishes the goals stated above, while providing the
infrastructure for inserting all sorts of new capabilities. The idea is to implement new
features in stand-alone modules (special Classes). All these modules are derived from
a parent virtual class named LdpmModule. The LdpmModule class provides links to
connect these new modules to each other and to the standard LDPM formulation. The list
of module objects created using LdpmModule classes are handled by the LdpmModuleList

class. LdpmModuleList is derived from class obLst, since it operates on a collection of
similar objects: the modules.

The next two subsections are intented for those researchers that indend to write new
modules. They describe, the classes ...
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Class LdpmModule is a virtual class in the sense that no practical objects can be
derived from this class. It is used as the parent class for the various types of modules,
where each module perform a specific task. It consists of a set of static members, which
allow to share information between modules, and polymorphic methods, which implement
the desired functionality. The polymorphic methods are executed in loops over the list
of modules in method LdpmModuleList::execAtEveryStep(). Thus, the insertion of
a new module does not require any change to the rest of the program, other than we
must insert a couple of lines of coding in LdpmModules::read() so that we can create
new new module. Typically, everything else should remain unchanged.The current setup
of the LdpmModule and LdpmModules classes should satisfy most of the needs. Since
we are just starting, we may need to make minor modifications to accomodate unforseen
situations.

The data organization relies on defining a series of static variables inside the Ldp-
mModule parent class. These variables are shared by all Ldpm module classes derived
from LdpmModule. The current list of variable is shown below

XX

Currently, there are five polymorphic methods for the virtual class LdpmModule. The
developer of a module must implement the desired functionality of a new module using
one or more of these modules:

virtual void read(Reader *);

virtual void initialize() { };

virtual void updateFields() { };

virtual void imposeFacetStrains() { };

virtual void modifyMaterialParameters() { };

The first module, read(), is executed during the reading phase. It is intended for reading
various parameters. There are rare situations where it is not necessary; in this case, the
default method is used. The second method, initialize(), i executed during the initializa-
tion phase. As all initialization methods, it is intended to initialize various parameters.
Note, that because the MPI partitioning of the elements and nodes of the model is done
between the reading and the initialization phases, no initialization tasks should be done
in the reading phase. The last three methods are executed at every time step in Ldp-
mModules::execAtEveryStep() in loops over all LdpmModule’s as shown in the listing
below of this method.

void LdpmModuleList::execAtEveryStep () {

int i;

// initialize applied strains in state variable arrays to zero

LdpmModule::resetFacetStrains();

// here we set the values of the field variables (temp, humidity, etc.):

// 1. interpolation from external files

// 2. constant values

// 3. time dependent variables
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// 4. computed using a solver

for (i=0; i<numLdpmModules; i++)

ldpmModule[i]->updateFields();

// some module can compute external strains, these are incrementally added

// to the ’applied strain’ state variables

for (i=0; i<numLdpmModules; i++)

ldpmModule[i]->imposeFacetStrains();

// this method makes it possible to change facet material parameter

// as they evolve in time due to various factors

for (i=0; i<numLdpmModules; i++)

ldpmModule[i]->modifyMaterialParameters();

}

In the examples contained in this file, you can see different classes that are designed to
set field variables, using different approaches:

1. by reading an external file.

2. by setting input constant values,

3. by setting time history value,

4. by using a special time-space dependent function.

An new module can be designed to drive a coupled solver so that temperatures and
relative humidities can be computed during a simulation, taking into account the damage
that is taking place at the facets.

The imposeFacetStrains() method is intended to enable some modules to compute
external strain increments that are added to the facet external strain state variables.
These could consists of thermal strains, ASR strains, etc.

Finally, the modifyMaterialParameters is intended to enable the creation of modules
that change facet material properties during a simulation.

MPI considerations. The Framework has already been set up for MPI. In MPI ex-
ecutions, the LDPM tet elements are distributed among the processors. The detailed
information of an LDPM element, such as the data of its 12 facets, is present only in
the process that owns that element. As such, variables such as numFacets, facet, sv,
facetTemperature, etc, are static within each process. In other words, each process has
a different collection of facets and related variables. This is already taken care of since
the loop over the LDPM elements includes a conditional statement tt[i]-¿isMpiOwned().

for (i=k=0; i<numTets; i++) {

if (tt[i]->isMpiOwned()) {

. . .

}

}
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11.9.1 LDPM Module Class

LdpmModule is a virtual class that is used as a base class for deriving sub-classes that
implement desired functionalities for extendend LDPM. Extended functionality includes
very ...

The static variables are available to all modules either for writing or for reading. For
example, some modules may be designed to compute or read the static variables, other
modules may be designed to use the static variable and ...

If a LDPM module increments the normal imposed strains at the facets, then it should
also set the volStrains flag to true so that the volumetric imposed strain computations are
enabled. The volumetric strain computations are perfomed in static function LdpmMod-
ule::setVolumetricImposedStrain(). This function is executed in the execAtEveryStep
method if the volStrains flag is set to true. This function retrieves the total imposed
strains and computed the volumetric strain.

A note about static variables and MPI. Static variables are shared among the objects
instantiated from this class within a MPI process. Different MPI processes have different
copies of the static variables. That’s what we want since the number of facets as well as
the facets themselves are different in the various MPI processes

class LdpmModule : public Object { // virtual class

protected:

static ttLst *ttL; //

// for MPI calculations, facets are defined only within the processor

// that owns the tet element with the facets in it, thus numFacets is

// the number of facets for an MPI process

// information at Ldpm facets

static int numFacets;

static LinkFace **facet; // ldpm facets

static double **sv; // array of facet state variable pointers

static int maxNumFields;

static int numFields;

static string *fieldLabel;

static double **facetField;

static tfLst *fctL; // facet list

static int npf; // number of plot frames

static int xpf; // max number of plot frames

static void **vp; // array for plot info

static int maxNumStrains;

static int numStrains;

static string *strainLabel;

static double **facetStrain;

static int numParticles;

static Node **particle;

static double **particleField;

static int *particleTable;
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// material pointer for accessing facet state variables

static mtRCConcreteX *mat;

static bool volStrains; // flag for computing volumetric strains

}

static void setTetList(ttLst *tL);

static void allocateFields(int);

static void allocateStrains(int);

static void resetFacetStrains();

static void setVolumetricImposedStrain();

static int assignNewField(Reader *);

static int findField(Reader *);

static int findField(string) { return 0; };

static int assignNewStrain(Reader *);

static int findStrain(Reader *);

static int findStrain(string) { return 0; };

static void appendParticlePlotRecord(string, double *);

static void plotParaviewParticleData(string, int);

static void appendFacetPlotRecord(string, double *);

static void plotParaviewFacetData(string, int);

The method setTetList() is called in the initialization phase of the LdpmModuleList

list. The purpose is to set up several static variables.
The next ... ...

virtual void read(Reader *);

virtual void initialize() { };

virtual void updateFields() { };

virtual void imposeFacetStrains() { };

virtual void modifyMaterialParameters() { };

11.10 LDPM Module List

The LdpmModuleList consists of a set of Ldpm modules that work together. Each mod-
ule performs a specific task, such as creating fields of various quantities, implementing
material behaviors, outputting information.

LdpmModuleList ’listName’ {

TetSolidList ’tetListName’

// List of corrent available modules

ConstantField { . . . }

TimeDependentField { . . . }

ThermalStrains { . . . }

Shrinkage { . . . }

Creep { . . . }

Giovannis3DOutput { . . . }
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FacetDataDump { . . . }

FacetDataPlot { . . . }

ParticleDataDump { . . . }

ParticleDataPlot { . . . }

}

The LDPM modules currently implemented in the production version of Mars are de-
scribed below.

11.10.1 ConstantFieldModule

This module generates constant fields for both particles and facets. All facets and all
particles are assigned the value specified in the input.

ConstantField {

Value ’realNumber’ ’units[string]’ // [1]

FieldLabel ’string’ // [2]

FieldRateLabel ’string’ [2]

}

[1] The value of the field is converted to calculation units using the generalized conversion
procedure described in the unit section of this manual. If the value is non-dimensional
enter the number 1 for the units field.
[2] Labels are used for referencing these fields in other modules.
Example

ConstantField {

Value 70. degF

FieldLabel Temp

FieldRateLabel TempRate

}

ASR {

TemperatureField Temp

TemperatureRateField TempRate

. . .

}

11.10.2 Time Dependent Field Module

This module generates spatially uniform fields that vary in time for both particles and
facets. The time history of the field variable is specified using a LoadCurve object.

ConstantField {

History ’historyName’

FieldLabel ’string’ // [1]

FieldRateLabel ’string’ [1]

}
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[1] Labels are used for referencing these fields in other modules.
Example

LoadCurve TempHist {

X-Units time days

Y-Units general degC

ReadPairs 3

0. 20.

100. 25.

1000. 20.

}

LdpmModuleList LML {

. . .

ConstantField {

History TempHist

FieldLabel Temp

FieldRateLabel TempRate

}

ASR {

TemperatureField Temp

TemperatureRateField TempRate

. . .

}

}

11.10.3 Thermal Strain Module

This module implements thermal strains. The input is as follows.

ThermalStrains {

CoefficientThermalExpansion 0.05 1/degK

TemperatureRateField TRF // [1]

NormalStrain TS // [2]

NormalStrainIncrement TSI // [2]

}

[1] This command associates the field with label CT created previously to the temperature
field that is used in the ASR evolution model (note that the label is just an arbitrary
string used in the input file.
[2] These commands are used to create data arrays that store normal strain and normal
strain increment for later post-processing.

11.10.4 Shrinkage Module

This module implements shrinkage strains caused by relative humidity. The input is as
follows.

155



ThermalStrains {

ShrinkageCoefficient 0.05 // no units for this variable

RelativeHumidityRateField TRF // [1]

NormalStrain ShrnkS // [2]

NormalStrainIncrement ShrnkSI // [2]

}

[1] This command associates the field with label CT created previously to the temperature
field that is used in the ASR evolution model (note that the label is just an arbitrary
string used in the input file.
[2] These commands are used to create data arrays that store normal strain and normal
strain increment for later post-processing.

11.10.5 ASR Module

This module implement ASR behavior. The input is as follows.

AsrModule {

AsrEvolutionModel AEM

TemperatureField CT // [1]

TemperatureRateField CTR // [2]

RelativeHumidityField CRH // [2]

RelativeHumidityRateField CRHR // [2]

CementHydrationDegreeField CCHD // [2]

NormalStrainIncrement SNSI // [3]

NormalStrain ASRS // [3]

}

[1] This command associates the field with label CT created previously to the temperature
field that is used in the ASR evolution model (note that the label is just an arbitrary
string used in the input file.
[2] similar to explanation 1.
[3] These commands are used to create data arrays that store normal strain and normal
strain increment for later post-processing.

11.10.6 Giovanni’s 3D Output Module

SM2Interpolator ScalarFields 3Dsym {

. . .

}

LdpmModuleList LDPMML {

Giovannis3DOutput {

SM2interpolator ScalarFields

// Field (keyword) FieldDescriptor FieldLabel

// PositionInGiovannisFile (int) scalar/rate (flag)

// FieldDescriptor is not used for anything at the moment
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// FieldLabel is a label used to identify the field in other modules

// PositionInGiovannisFile start from 1

// I may append optional conversion units: e.g. ’ temperature degC’

Field Temperature T 1 scalar

Field TemperatureRate TR 1 rate

Field RelativeHumidity RH 2 scalar

Field RelativeHumidityRate RHR 2 rate

Field TotalReactionDegree TRD 3 scalar

Field AgingDegree AD 6 scalar

}

}

11.10.7 Facet Data Dump Module

This module generates a text file containing facet data information at specified time
intervals. The input format is shown below.

FacetDataDump {

FileName ’fileName’

RealTimeInterval 2 days // or

RealTimeIntervalCurve ’curveName’

Fields { ’FieldLabel1’ ’FieldLabel2’ . . . } [1] // or

Fields { All }

Strains { ’StrainLabel1’ ’StrainLabel2’ . . . } // or

Strains { All }

StrainIncrements { ’StrainIncrementLabel1’ . . . } // or

StrainIncrements { All }

}

[1] Fields are selected specifying their labels. If you want a dump of all fields, use the
command All. The output file, named ’fileName’, is created in the result folder.

11.10.8 Facet Data Plot Module

This module generates a sequence of Paraview plot files containing facet field information.
Plot files can be created at regular constant time intervals or using time intervals specified
using a time dependent function. The input format is shown below.

FacetDataPlot {

FileName ’fileName’

RealTimeInterval 2 days // or

RealTimeIntervalCurve ’curveName’ // [1]

Fields { ’FieldLabel1’ ’FieldLabel2’ . . . } [1] // or

Fields { All }

Strains { ’StrainLabel1’ ’StrainLabel2’ . . . } // or

Strains { All }
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StrainIncrements { ’StrainIncrementLabel1’ . . . } // or

StrainIncrements { All }

}

[1] The real-time-interval-curve computes the time increment ’dt’ (in real time) for com-
puting the next plotting time ( tNext = tCurrent + dt) interpolating the curve using the
current real time.

See ParticleDataDumpModule for explanation on Fields.
Output files are named ’fileName’.’frm’.vtu, where frm is the frame number start-

ing from 0., and are created in the result folder.

11.10.9 Particle Field Dump Module

This module generates a text file containing particle data information at specified time
intervals. The input format is shown below.

ParticleDataDump {

FileName ’fileName’

RealTimeInterval 2 days // or

RealTimeIntervalCurve ’curveName’

Fields { ’FieldLabel1’ ’FieldLabel2’ . . . } [1] // or

Fields { All }

}

[1] Fields are selected specifying their labels. If you want a dump of all fields, use the
command All. The output file, named ’fileName’, is created in the result folder.

11.10.10 Particle Data Plot Module

This module generates Paraview plot files containing particle field information at regular
time intervals. The input format is shown below.

ParticleDataPlot {

FileName ’fileName’

RealTimeInterval 2 days // or

RealTimeIntervalCurve ’curveName’

Fields { ’FieldLabel1’ ’FieldLabel2’ . . . } [1] // or

Fields { All }

}

See ParticleDataDumpModule for explanation on Fields.
Output files are named ’fileName’.’frm’.vtu, where frm is the frame number start-

ing from 0., and are created in the result folder.
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12 Hexahedral Solid Elements

The HexSolidList can be used to define a set of hexahedral 8-node solid elements. These
elements can represent:

• purely geometric entities,

• deformable finite elements, or

• a set of disconnected rigid bricks.

The type of element is specified in the first line after the list name.

HexSolidList ‘ListName’ ‘type’ {

// where the keyword ‘type’ can be one of the following:

// Geometry: this can be used to define rigid bodies

// Rigid: this is used to define separate bricks

// FBSingleIP: Flanagan-Belitshcko formulation

// 8IP: FE fomulation with 8 integration points

// HyperElastic: formulation for rubber-materials

// SimpleHex: simplified formulation for prismatic elements

// Explosive: this employs EOS materials

//

// 1.) If this list is used to define a rigid body, enter

Density 7.8 g/cm3

// else

Material MATE

// You can also use

InsertMaterial Mat {

. . .

}

// when material was not previously defined

// 2.) If mesh is explicitly defined enter

NodeList Nodes

// or

InsertNodeList Nodes {

. . .

}

ReadObjects 345 // number of elements

// i n1 n2 n3 n4 n5 n6 n7 n8

1 124 243 56 165 234 312 23 126

2 56 238 121 78 56 98 126 66

. . .

// else, if mesh is internally generated, enter

Generate {

. . . // see below for generation options
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}

CopySelectedElementsFromList ‘listName’ // {1a}

// or

SplitTetMesh ‘tetMeshListName’

// 3.) optional commands

Make QuadFaceList ‘ListName’ // {2} generate a list of external surfaces

Smooth

Make TriangFaceList ‘ListName’// {3} generate a list of external surfaces

Make particleList PRTC { ... } // see below

Make HexSolidList SLCT // make sublist of select hexes

Make EdgeList ‘ListName’ AllEdges

// make HexSolidList of selected elements

Make HexSolidList ListName {1}

Refine RFN6 // Refine mesh by splittying 2x2x2

// select commands

Select, Unselect, ... // see below

RemoveUnselectedElements // {4}

SelectNodes // {5}

// to operate on the node list

EditNodeList {

. . . // nodelist commands

}

// use this command to save the mesh in a separate file

Write PartMeshDataFile PART.mrs

Write ElementDataFile PRT1.mrs // elements only

// use this command to read nodes and elements previously saved

ReadFile PART.mrs

}

1a The command ‘CopySelectedElementsFromList’ appends new hex elements to the
current list by copying them from another list. The new elements reference the same
nodes referenced by the original elements. For this reason, the source hex list and the
current hex list must use the same node list. When using this command by itself, there
is no need to specify the node list. The node list of the source hex list will be used for
the current hex list. The new hex elements are distinct from the source elements and are
generally of a different type: for example the source list may consist of geometric hex
elements and the current list may consists of 8-integration point structural elements.

12.1 Select Commands

Select [criterion]

AlsoSelect [criterion]

Unselect [criterion]

Reselect [criteroin]

InvertSelection
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[criterion] can take one of the following forms

all // all elements

element 25 // element 25

elements 1 5 // elements 1 through 5

elements 1 100 2 // elements 1 through 100 step 2

vl > 0.4 // elements with volume > 0.4

vl = 0.4 // elements with volume apprx = 0.4

vl < 0.4 // elements with volume < 0.4

1n // elements with at least one node selected

8n // elements with all eight nodes selected

Examples:

Select elements 1 100 // select element 1 through 100

AlsoSelect elements 201 300 // add elements 201 - 300

Reselect 8n // select only element with all eight nodes

// selected from elements selected above

Hex solid lists and all derived lists include commands for selecting nodes: ‘SelectNodes’,
‘UnselectNodes’, and ‘ReselectNodes’. See examples in the NodeList section.

12.2 Generate Commands

These commands make it possible to generate hex meshes for simple parts within the
MARS code. Multiple parts can be generated within a single list and possibly fused
together by merging the overlapping nodes using the MergeParts command. The generate
commands create a new list of nodes if necessary and appends the new nodes to the
current list of nodes.

HexSolidList ‘ListName’ ‘ListType’ {

. . .

Generate {

// Enter one or more generate commands

Cylinder { . . . }

Sphere { . . . }

Extrude { . . . }

. . .

MergeParts 0.001 in

}

}

A series of avaiable geometric entities is given below.
The Cylinder command is used to generate a structured hexahedral mesh of a cylin-

derical volume in the RFSY local coordinate system. The axis of the cylinder is oriented
in the z-axis of the local reference system. The EdgesOnCircle parameter must be a
multiple of 8 and controls the element density in the cross-section. The ElementSize

parameter is applied only for computing the number of elements in the axial direction.
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Cylinder {

ReferenceSystem RFSY // cyl axis // z-axis

Radius 4. in

EdgesOnCircle 24 // must be multiple of 8

Length 8. in

ElementSize 1. in

}

The Sphere command is used to generate a structured hexahedral mesh of a spherical
volume in the RFSY local coordinate system. The axis of the cylinder is oriented in the
z-axis of the local reference system. The EdgesOnCircle parameter must be a multiple
of 8 and controls the element density in the cross-sections that split the sphere in two
equal hemispheres.

Sphere {

ReferenceSystem RFSY // cyl axis // z-axis

Radius 4. in // radius of cylinder

EdgesOnCircle 40 // must be multiple of 8

Translate 3. in 0. in 0. in

}

The Rotate command is used to generate a hexahedral mesh of a toroidal (ring) vol-
ume obtained by sweeping a flat quadrilateral mesh around the z-axis. All faces of the
quadrilateral mesh should have the same normal. The original mesh is swept in a cir-
cular motion in the positive z-direction for an angle DeltaAngle ( DeltaAngle is given
in degrees. ) The NumCircumferentialElements parameters controls element size in
the circumferential direction. The number of elements in the circumferential direction is
computed by computing (int)(TotalAngle/DeltaAngle).

Rotate {

QuadFaceList Disk

TotalAngle 180.

// user either DeltaAngle or NumCircumferentialElements

DeltaAngle 10.

NumCircumferentialElements 18

}

The Extrude command is used to generate a hexahedral mesh of a prism obtained by
sweeping a flat quadrilateral mesh in the direction perpendicular to it. All faces of
the quadrilateral mesh should have the same normal. The original mesh is swept in
the positive normal direction for a distance of Length. The ElementSize parameters
controls element size in the normal direction.

Extrude {

QuadFaceList Disk

Length 4 in

ElementSize 0.4 in

}
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wall { h 96 w 172 t 12 B }

The Block command is used to generate a regular hexahedral mesh of a parallelepipedal
prismatic volume in a local reference system RSYS. Dimensions specify the size of the
volume. Elements specify the number of elements in the three directions.

Block {

ReferenceSystem RSYS

Dimensions 4 in 8 in 20 in

Elements 2 4 10

}

The SuperBlock command is also used for generating a regular hexahedral mesh of a
parallelepipedal prismatic volume, but provides more control over the mesh density in
subregions. In the example below, the central portion of a cubic volume is refined with
element 0.5 cm in size, where the elements outside are 1 cm in size. The X line includes
the following parameters: x1 = -8. (cm), n1 = 6, x2 = -2. (cm), n2 = 8, ... n4 = 0.
This means that the first interval from x1 to x2 is divided into n1 elements, the second
interval between x2 and x3 is divided into n2 = 8 element. Finally, n4 = 0 indicates the
end of the sequence.

SuperBlock {

LengthUnits cm

// format Dir crd1 elements1 crd2 elements2 crd3 ...

X -8. 6 -2. 8 2. 6 8. 0

Y -8. 6 -2. 8 2. 6 8. 0

Z -8. 6 -2. 8 2. 6 8. 0

}

12.3 Make Commands

1 The ‘Make HexSolidList’ is used for generating a sub-list of hex elements which have
been selected. The new list is of the ‘Geometric’ type; in other word, MARS will not try
to compute internal forces.

2 The ‘Make QuadFaceList’ is used for generating a list of all quadrilateral external
surfaces of the complete mesh. If the user desires to generate external faces of a portion
of the mesh, then the ‘Make HexSolidList’ command should be done first and the face
list should be generated from inside the hex sub-list.

3 The ‘Make TriangFaceList’ is used for generating a list of triangular surfaces by
splitting the quadrilateral faces of the list generated using the ‘Make QuadFaceList’
command. If the quad-face list was not previously generated, MARS will automatically
generate it.

The ‘Make EdgeList’ command is used to generate a list of edges from the edges of
the hexahedral elements. This command must be terminated by a keyword for the edge
selection criterion; three options are available:
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Make EdgeList ‘ListName’ AllEdges

Make EdgeList ‘ListName’ SurfaceEdges

Make EdgeList ‘ListName’ SharpEdges

The option ‘AllEdges’ is used to generate a list of all internal and external edges of the
hex mesh. The other two options rely on the list of external quad faces generated using
the ‘Make QuadFaceList’ command. If the quad-face list was not generated, MARS
will automatically generate it. The option ‘SurfaceEdges’ is used to generate all external
edges of the hex mesh. This list is useful for edge-edge contacts. The option ‘SharpEdges’
is used to generate a list of edges for which the attached faces form an angle greater than
60 degrees. This list is useful for graphics when we want to represent the outline of a
solid component.

4 The option ‘RemoveUnselectedElements’ is used to permanently remove unselected
elements from the list. This operation is done during the reading phase. It should be done
before ‘Make QuadFaceList’ or ‘Make EdgeList’ for these derived list to be consistent
with the reduced hex list.

5 The command ‘SelectNodes’ select all nodes attached to previosusly selected ele-
ments.

12.4 Time History Commands

The following line commands are intended to be used inside TimeHistoryList’s to
produce records of global list variables or variables associated to a single element. Most of
the variables are meaningful only for deformable hex elements. For element formulations
where the requested variables are not available, the record will consists of zero values.

TimeHistoryList HIST {

. . .

// histories for entire list

hxL-PART Volume // [1]

hxL-PART InternalWork // [1]

hxL-PART DissipatedEnergy // [1]

hxL-PART ElasticEnergy // [1]

hxL-PART HourglassWork // [1]

hxL-PART MaxVonMisesStress // [2]

hxL-PART MaxStateVariable 7 // [2]

hxL-PART MinStateVariable 4 // [2]

// histories for single element

hx-PART 1 vl // volume of element 1

hx-PART 1 vm // Von Mises stress

hx-PART 1 pr // pressure

hx-PART 1 I1 // first invariant

hx-PART 1 J2 // second invariant

hx-PART 1 sv 3 // state variable 3

hx-PART 1 xCG // element x-coord of center of gravity
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hx-PART 1 yCG // element y-coord of center of gravity

hx-PART 1 zCG // element z-coord of center of gravity

}

[1] These variables are computed taking the integral of a quantity over all elements in
the list
[2] These variable are computed taking the maximum value (or minimum value) of a
quantity over all elements in the list

12.5 Plot Attribute Commands

Since Quasar and Paraview operate quite differently, the input commands for generating
plot-files for the two post-processors are quite differeny and are treated separately.

The Quasar input commands for hex-solid lists can be incorporated in a PlotList

section shared with other lists. Quasar operates on quadrilaterl faces, triangular faces,
edges, and points. points.

PlotList PLOT Quasar {

. . .

hxL SolidPart {

// you may selecte one of the contour variables below

ContourVariable StateVariable 1

ContourVariable Velocity

ContourVariable X-Velocity

ContourVariable Y-Velocity

ContourVariable Z-Velocity

ContourVariable MinPrincipalStress

ContourVariable MaxPrincipalStress

ContourVariable VonMisesStress

// stresses are averaged at the nodes unless ..

NoNodalAveraging

SelectedElementsOnly

NoSmoothing // discrete colored fringe plots

// prescribe range after countour variables is selected

(use appropriate units)

RangeMinValue 0 psi

RangeMaxValue 10000 psi

}

hxL PRT2 { OutlineOnly }

}

If you need to plot more than one variable, create new entries in the plot list:

PlotList PLOT Quasar {

. . .

hxL SolidPart { // first variable
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ContourVariable StateVariable 1

. . .

}

hxL SolidPart { // second variable

ContourVariable MinPrincipalStress

. . .

}

. . .

}

The contour variable list can be obtained looking at the information in the material
model section. Typically, state variable 1 is the xx-stress, 2: yy-stress, 3: zz-stress, 4:
yz-stress, 5: zx-stress, 6: xy-stress.

Mars can generate two types of Paraview files. The first type is similar to the Quasar
approach, where only the information on the external faces is output to plot files. The sec-
ond type takes advantage of Paraview’s capabilities of reading and treating solid meshes.
All solid element information is saved to the plot files making it possible to slicing and
clipping the part. Obviously, the second approach generates much larger files. Nodal ve-
locities are automatically saved and can be used for generating contour plots in Paraview.
If the hex elements are deformable elements, then the stress tensors of all elements (for
the solid option) are automatically saved to the output file.

PlotList PLOT Paraview {

TimeInterval 10 us

// use ‘Solid’ to create solid plots

hxL ‘PartName’ { Solid }

// save stress tensor data

hxL ‘PartName’ { Solid StressVariables }

// save all state variables

hxL ‘PartName’ { Solid AllStateVariables }

// save data for state variable 13 only

hxL ‘PartName’ { Solid StateVariable 13}

}

Recall that Paraview format requires a single list per PlotList.

12.6 Particle Generation Commands

HexSolidList WALL {

Material CNCR // mtCConcrete type

// Enter or generate FE mesh

. . .

Make ParticleList PRTC {

GapScalingFactor 0.05 // <gsf> min inter-particle

// gap > 0.05 x min aggr. diam (dfl=0.1)
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Seed 1543 // integer seed for random no. gener.

PlotSieveCurve

Debug

ConstantSpacedParticlesOnEdges

}

}

#-- if rebars are present in the model enter

Make ParticleList PRTC { npL RBR1 npL RBR2 }

#-- where RBR1 and RBR2 are rebar slave particle lists

The ‘Make ParticleList’ is currently not working properly. An alternative particle gen-
eration method is executed using the command ‘Make ParticleList2’. This method is
intended to work with solid meshes where the external facets are used as external facets
of the LDPM mesh. The mesh density should be controlled so that the external facets
are of the correct dimensions. For example, a LDPM sphere can be generated using the
following commands:

HexSolidList Ball Geometry {

Material CONC

Generate {

Sphere {

Radius 150 mm

EdgesOnCircle 20

}

}

Make ParticleList2 PRTC {

seed 173521

}

}

More specifically, MakeParticle2 follows the following logic: 1) find external quadrilateral
faces of the hexahedral mesh, 2) split quadrilateral faces into triangular faces, 3) the
triangular faces are passed to tetgen which uses them when generating the tetrahedral
mesh, 4) generate a list of particles from largest to smallest, 5) insert each particle inside
the volume of the solid using a random process (every point inside the volume has the
same probabilty of being chosen independently of the size of the element that contains
it), 6) if particle does not interfere with external surfaces or previous particles, fix its
position, 7) once all particles have been placed, pass particle list to tetgen what will use
them to anchor internal points of the triangular mesh.

12.7 Fragmentation Commands

#-- select one of the probability functions

Weibull { . . . }

Cracking { dmn 0.01 in efl 0.2 random fe 100 N/m }

#-- defaults dmn = 0. efl = 0.
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12.8 Viscous Hexes

The purpose of this list is to provide some artificial internal damping to kill internal
vibrations. It is different than dynamic relaxation in the fact that a vibrating moving
body will stop vibrating but its average velocity is maintained. This list is used in
conjunction with another list consisting of deformable elements. This list does not own
its objects (hexes), but uses the objects of the hex list it is connected to.

HexSolidList ‘ListName’ Viscous {

// 1.) Enter master list (Req.)

MasterHexList ‘HexListName’

// 2.) Enter either load curve or damping constant (Req.)

LoadCurve ‘CurveName’

Damping 0.001 1/s

}

12.9 Cubic Hexes

The purpose of this list is to provide a computationally inexpensive hex element formu-
lation for regular meshes consisting of repetitive cubic shaped elements. The formulation
is a simplified single point integration method with hourglass control. The B matrix is
computed once in the initialization phase and is constant for all elements in the list. This
formulation is designed for small deformation, small displacement regions and linear elas-
tic or mildly inelastic materials. One of the primary purposes is for treating transition
zones in multi-scale problems.

HexSolidList ‘ListName’ Cubic {

// 1.) Material (Req.)

Material ‘materialName’

// 2.) Define mesh using standard commands (Req.)

. . .

}

12.10 Rigid Hexes

This list consists of a collection or rigid disconnected hexahedral elements. It is intended
for modeling brick walls, where every brick is modeled using a single hexahedral ele-
ment. Some typical brick layouts can be automatically generated from within MARS.
Generation options are described in the mesh generation section.

HexSolidList ‘ListName’ Rigid {

// 1.) Enter either ‘Material’ or ‘Density’, not both

Material ‘matName’ // for providing density

Density 7.8 g/cm3

// 2.) Enter mesh generation commands or mesh listing including

// reference to NodeList (same as other listings)
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. . .

}

12.11 Deformable Hexes with 8 Integration Points

The purpose of this list is to . . .

HexSolidList ‘ListName’ 8IP {

// 1) Enter material (req.)

Material ‘MatName’

// 2) Enter reference system for local RS (opt.)

ReferenceSystem ‘RefSysName’

// 3) Enter mesh input or mesh generation commands

. . .

}

Caution: it is well-known that the 8-point integration scheme makes elements somewhat
stiffer in elasto-plastic flows.

13 Rigid Bodies

A MARS rigid body consists of a set of nodes kinematically tied together. There are
two main ways to select the nodes that form a rigid body: 1) within a node list, select
all nodes or a subset of nodes and enter the node list for processing, 2) enter an element
list for a specific mesh. As an example of the second way, let’s say we want to convert a
solid body (discretized using an hexahedral list) into a rigid body, we first need to define
the solid using an HexSolidList specifying the density and not the material:

HexSolidsList ‘HexListName’ Geometry {

Density 7.8 g/cm3

NodeList ‘NodeListName’

. . .

ReadObjects ...

. . .

}

and then define the rigid body

RigidBody ‘RigidBodyName’ {

HexSolidList ‘HexListName’

}

In either case, the geometry and material density are used to computethe nodal masses.
In turn, the nodal masses are used to compute the rigid body total mass and moment of
intertia tensor.
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Several types of objects can be tied together to form a rigid body. All nodes used
to define these objects are enslaved to the translation and rotations of the master rigid
body. Currently, the following lists can be used for the definition of a rigid body:

ndL, NodeList

hxL, HexSolidList

qfL, QuadFaceList

qsL, QuadShellList

tfL, TrngFaceList

tsL, TrngShellList

bmL, BeamList

eeL, EdgeList

ttL, TetSolidList

The rigid body initialization method automatically computes the total mass, center of
gravity, and tensor of inertia of the rigid body based on the inertial properties of the
components. These values can be overwritten using the following commands:

RigidBody ‘BodyName’ {

. . .

Set Mass 45.3 Kg

ine 543 Kg.m2 34 Kg.m2 167 Kg.m2

. . .

}

Boundary conditions and initial velocities imposed at the nodes of the original lists are
disregarded. Boundary conditions and initial velocites can be imposed on the rigid body.
The general input format for a rigid body is shown below:

RigidBody ‘RigidBodyName’ {

// 1. enter a sequence of lists of objects that will be

// connected as a rigid body

NodeList ‘NodeListName’

HexSolidList ‘SolidListName’

HexSolidList ‘SolidListName’

BeamList ‘BeamListName’

TriangShellList ‘ShellListName’

// 2. set boundary conditions (optional)

Set Translations XXX

Set Rotations XXX

// 3. set initial velocities and/or rotation rates (optional)

Set Velocities 15 in/s 0 in/s 0 in/s

Set X-Velocity 15 in/s

Set RotationRates 0. rad/s 0. rad/s 14. rad/s

Set Z-RotationRate 14.

// 4. overwrite calculated mass (optional)

Set Mass 15 Kg

}
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13.1 Time History Commands

The following line commands are intended to be used inside TimeHistoryList’s to
produce records of rigid body variables.

TimeHistoryList Hist {

. . .

RB-‘bodyName’ vx // x-component of CG velocity

RB-‘bodyName’ vy // y-component of CG velocity

RB-‘bodyName’ vz // z-component of CG velocity

RB-‘bodyName’ wx // x-component of rotation rate

RB-‘bodyName’ wy // y-component of rotation rate

RB-‘bodyName’ wz // z-component of rotation rate

RB-‘bodyName’ cx // x-component of CG coordinate

RB-‘bodyName’ cy // y-component of CG coordinate

RB-‘bodyName’ cz // z-component of CG coordinate

RB-‘bodyName’ fx // x-component of force

RB-‘bodyName’ fy // y-component of force

RB-‘bodyName’ fz // z-component of force

RB-‘bodyName’ mx // x-component of moment

RB-‘bodyName’ my // y-component of moment

RB-‘bodyName’ mz // z-component of moment

}

14 Loadings

14.1 Nodal Load List

Use these commands to specify forces or moments to a single node, a set of nodes, or a
rigid body. Loads vary in time according to the time history specified in the load curve.

NodalLoadList ‘ListName’ {

// 1. Enter ‘Moments’ if you want to apply moments instead

// of forces (Opt.)

Moments

// 2. Enter either NodeList or RigidBody (Req.)

NodeList ‘NodeListName’

RigidBody ‘RigidBodyName’

// 3. Enter LoadCurve (Req.)

LoadCurve ‘LoadCurveName’

// 4. Enter load direction (Req.)

Direction 0. 1. 0.

// 5. Enter scaling factor (Opt.) and/or Distribute

Scale -1.

Distribute // [1]
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// 6. Use one of the four lines below to specify nodes

// (Required when NodeList is used)

Node 1 // single node

Nodes { 1 4 7 9 } // multiple nodes

All // all nodes in the list

SelectedNodes

// Nodes can be selected inside this block using the

// EditNodeList command

EditNodeList {

Select cx > 0.

}

SelectedNodes

}

[1] The Distribute command is used to distribute the load equally among the specified
nodes. If this command is not used, each node will be loaded with the specified load.
This requires requires

Alternate way

NodalLoadList ‘ListName’ {

NodeList ‘NodeListName’

LoadCurve ‘LoadCurveName’

ReadObjects 2

// nd dx dy dz scl

54 1. 0. 0. 2.3

58 1. 0. 0. 2.5

}

14.2 Prescribed Velocities List

Use these commands to specify velocities or rotatation rates to a single node, a set of
nodes, or a rigid body. Velocities vary in time according to the time history specified in
the load curve.

PrescribedVelocityList ‘ListName’ {

// 1. Enter ‘Rotations’ if you want to apply rotations

// instead of velocities (Opt.)

Rotations

// 2. Enter either NodeList or RigidBody (Req.)

NodeList ‘NodeListName’

RigidBody ‘RigidBodyName’

// 3. Enter LoadCurve (Req.)

LoadCurve ‘LoadCurveName’

// 4. Enter load direction (Req.)
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Direction 0. 1. 0.

// 5. Enter scaling factor (Opt.)

Scale -1.

// 6. Use one of the four lines below to specify nodes

// (Required when NodeList is used)

Node 1 // single node

Nodes { 1 4 7 9 } // multiple nodes

All // all nodes in the list

SelectedNodes

// nodes can be selected inside this block using the EditNodeList command

EditNodeList {

Select cx > 0.

}

SelectedNodes

// 7. Use line below for multiple orthogonal velocity constraints

DisregardMultipleConstraints

}

Alternate way

PrescribedVelocityList ‘ListName’ {

NodeList ‘NodeListName’

LoadCurve ‘LoadCurveName’

Input 2

// nd dx dy dz scl

54 1. 0. 0. 2.3

58 1. 0. 0. 2.5

}

Rigid Body

PrescribedVelocityList ‘ListName’ {

RigidBody ‘RigidBodyName’

LoadCurve ‘LoadCurveName’

Direction 0. 1. 0.

}

In general, you cannot impose multiple ‘hard’ constraints on the same node. For ex-
ample, you cannot impose a prescribed velocity to a node which is part of rigid body.
MARS flags nodes that have ‘hard’ constrained imposed on them. If you intend to
impose multiple prescribed orthogonal velocity conditions on the same node, use the
DisregardMultipleConstraints’ keyword. keyword.

MPI. For the purpose of MPI parallelization, all processors impose velocities or ro-
tations rates whether they own the nodes or not. This operation is computationally
inexpensive and there would be no benefit in distributing it.
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15 Constraints

Mars provides several types of constraints for modeling the interaction between differ-
ent parts in a model. Constraints can be loosely divided into two categories: penalty
formulations and master-slave formulations.

The penalty formulations are very reliable and do not create conflicts. They do
however only approximate the actual constraint and in some cases the forces generated are
not sufficient to enforce the constraints properly. Using stiff penalty parameters improves
the effectiveness of the constraint but increasing the stiffness may eventually introduce
local high frequency modes that require small time steps for stability. When using penalty
formulations, the user should make sure that results are not dependent on the choice of
the stiffness constants. This can be done by executing two or more simulations, doubling
the stiffness each time. If results do not change appreciably between executions, then the
stiffness is sufficient to enforce the constraints properly. The penalty forces are computed
in the polymorphic method calcFrc().

The master-slave formulations are very rigorous in enforcing constraints. However,
there are many pitfalls in their usage. The main problems occur when multiple ‘hard’
conditions are applied to the same entities. These include rigid body lists, prescribed
velocity lists, boundary conditions, and multiple master-slave constraints. When multiple
‘hard’ conditions are applied to the same nodes, results can be unpredictable. In most
cases, Mars will write a warning message when multiple conditions are applied to the
same node. If done properly, the results can be correct. It is important for the user
to fully understand how constraints work and how they may interact with each other
to avoid erroneous results. Master-slave constraints are enforced in two stages: a stage
where the forces of the slave objects are transferred to the master objects implemented
in the polymorphic method reduceFrc(), and a stage where the velocities of the master
objects are used to control the velocities of the slave objects implemented in method
applyKin(). In the solver loop, they appear in this order

while (t < t_end) {

for i = 1, 2, ... N-1, N

list[i]->clearNodalForces()

for i = 1, 2, ... N-1, N

list[i]->calcFrc()

for i = N, N-1, ... 2, 1

list[i]->reduceFrc()

for i = 1, 2, ... N-1, N

list[i]->integrateEOM()

for i = 1, 2, ... N-1, N

list[i]->applyKin()

}

The user should note that when reducing the forces in the reduceFrc method, the lists
are processed in the reverse order. This is very important when multiple constraints are
imposed.
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15.1 Node-Face Constraint List

TrngFaceNodeBondList BNDS {

// abbreviated notations in < > brackets

NodeList NODS // <ndL NODS>

FaceList FACS // <tfL FACS>

Tolerance 0.45 mm

// constraint types

// 2. Master slave, slave nodes may not lay on surface, rotations are not constrained

MasterSlaveNoRotations

// 3. Master slave, slave nodes may not lay on surface, rotations ARE constrained

MasterSlaveWithRotations

// 7. Master slave, slave nodes lay on surface, rotations are not constrained

SlavesOnSurface

// 6. Nodes slide over surface,

SlidingWithFriction 0.3 0.2 0.1 mm // [1]

// Enter lines below if bonds are entered explicitly

num 345

lst

// j jN jF

1 254 556

. . .

// 7. Mpi directives

Mpi { OwnedByNodeOwner } // [2]

Mpi { OwnedByFaceOwner } // default

}

[1] The sliding with friction constraint is designed to force a set of nodes to move over
a surface. The constraint perpendicular to the surface is treated using a master-slave
formulation. The resistance to sliding within the plane is treated with a stick-slip friction
model. When the node is sliding, the friction factor ff is computed using this expression

ff = fk + (fs − fk) A
A+d

where fk is the kinematic friction factor, fs is the static friction factor, A is a characteristic
length (derived from fitting available test data), and d is the cumulative slip resulting
from slippage computed during the simulation. The three parameters are specified in the
command:

SlidingWithFriction ‘sff’ ‘kff’ ‘A’

The node and the corresponding point on the surface stick together as long as the
tangential inplane force Ft does not exceed the maximum friction force Fmax = ffFn,
where Fn is the force normal to the surface. When Ft exceeds Fmax, the node starts
slipping and the friction force is progressively reduced because of accumulated slippage
according to the formula above. A constraint can return to the ‘stick’ status if tangential
forces cannot maintain slipping. In this case, the cumulative slippage is NOT reset to
zero. Warning: the current logic does not allow for a node to transition from one face to
an adjacent face.

175



WARNING: this constraint uses a mixed formulation: the motion normal to the
surface is imposed using master-slave constraints. It has not been possible to treat
both formulation correctly and the internal forces in the perpendicular direction are not
accounted properly. This algorithm may have some errors for high strain rates.
[2] In MPI executions, node-face constraints are distributed over the processors. Two
options are available: 1) the processor that owns the face also owns the constraint, 2) the
constraint is owned by the processor that owns the node. The first option is the default.

// Fixed cylindrical surface

TrngFaceNodeBondList BNDS {

NodeList NODS // <ndL NODS>

FixedCylSurface {

ssm 0.0012

csm 0.00015

nsm 0.5 mm

pnt 0. mm

dir 0. 0. 1.

rad 5 mm

tol 0.0 mm

}

}

The detection of the node-face pairs is automatically done. It is a good idea to check that
the detection process found all the pairs. This is done in interactive mode by selecting
the contraint list and entering ’P’ for plot at the tbL> prompt. This generates a plot file
named tbL.plt that can be viewed with Quasar

15.2 Node-Tet Constraints

This constraint is used to tie a set of nodes to a corresponding set of points inside a
tetrahedral element mesh. Each node and corresponding point share the same spatial
location at time zero. Both penalty and master-slave formulations are available.

For the penalty formulation, there are three ways for computing the penalty stiffness:

1. constant stiffness for each constraint

2. stiffness computed based on time step and minimum node mass

3. stiffness computed using young’s modulus of tet list material

If the stiffness is based on a time step, the following equation is used

K =
mmin

∆t2

where m min is the minimum mass of the five nodes participating in the constraint
and Dt is the time interval specified via input. The smallest the time step, the larger
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the penalty stiffness resulting in smaller displacements. The idea is to select a time step
close but slightly larger than the stable time step for the simulation.

If the penalty stiffnesss is based on the Young’s modulis E of the material for the
tetrahedral mesh, the penalty stiffness is computed using the equation

K = EV 1/3

where V is the volume of the element that contains point P corresponding to node N.
The input format for the penalty formulation is:

NodeTetConstraintList ‘listName’ Penalty {

NodeList ‘nodeListName’

TetList ‘tetListName’

// choose one of the three options below

ConstantStiffness 100 lbs/in

StiffnessBasedOnTimeStep 0.001 ms

StiffnessBasedOnYoungsModulus

}

If the master-slave formulation is used, the mass of slave nodes N is distributed to the
nodes of the master tet element containing node N using the weighting factors computed
from the shape functions. The input format for a master-slave formulation is:

NodeTetConstraintList ‘listName’ MasterSlave {

NodeList ‘nodeListName’

TetList ‘tetListName’

}

15.3 Node-Hex Constraints

This constraint is used to tie a set of nodes to a corresponding set of points inside an
hexahedral element mesh. Each node and corresponding point share the same spatial
location at time zero. Both penalty and master-slave formulations are available. The
input commands for the penalty formulation are shown below:

NodeHexConstraintList ‘listName’ Penalty {

NodeList ‘listName’

HexList ‘listName’

}

The stiffness constant of a constraint between node N and point P is computed using
this equation

K = EV 1/3
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where E is the Young’s modulus of the material for the hexahedral mesh and V is the
volume of the element that contains point P corresponding to node N.

The input commands for the master-slave formulation are shown below:

NodeHexConstraintList ‘listName’ MasterSlave {

NodeList ‘listName’

HexList ‘listName’

}

The mass of slave nodes N is distributed to the nodes of the master hex element containing
node N using the weighting factors computed from the shape functions.

15.4 Beam-Tet Constraints

The beam-tet constraint is designed to constrain the motion of strings of beam elements
to the motion of a tetrahedral mesh. It is specifically intended to model rebar-concrete
interaction, where concrete is modeled using a tetrahedral LDPM mesh. The node-
tet constraint can be used for this purpose; however, the spacing of the constraints is
dictated by the length of the beam finite elements. In the beam-tet constraints, we
specify a number of points along the axis or on the surface of each beam element and we
enforce constraints at all these points. The main obvious advantage of this formulation
is that we can make the spacing of the constraints smaller than the average size of
tetrahedral elements. In this way, the forces transmitted from the rebars are distributed
in a smoother fashion to the concrete. A more significant advantage is the directionality
provided by the beam elements. This makes is possible to model slippage in the axial
direction, at least in the small deformation range. Three formulations are available:

• ElasticPenalty

• RebarConcreteInteraction

• RebarConcreteInteractionVE (volumetric effects)

15.4.1 Elastic formulation

This formulation ties a series of points along the beam element with corresponding points
inside the concrete LDPM elements using penalty springs. The stiffnes of the penalty
spring is computed based on an input time step. The alogorithm finds the smallest mass
m of the six nodes (two for the beam and 4 for the tet element) participating in the
constraint and computes the stiffness using the formula K = m / (dt*dt). We suggest a
time step 5 to 10 times larger than the integration time step.

BeamTetConstraintList ‘listName’ ElasticPenalty {

BeamList ‘beamListName’

TetList ‘tetListName’

NumberOfConstraintsPerBeamElement 2

Stiffness BasedOnTimeStep 0.002 ms

}
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15.4.2 Elastic formulation with slippage

In this formulation, the beam element is assumed to be cylindrical, which is a good
approximation for conventional rebars. A matrix of points is defined on the surface of
the cylinder: n points in the axial direction and m points around the circumference.
The corresponding points inside the tetrahedral mesh are also found. Each pair of rebar
surface point and corresponding tet point forms a constraint. During the simulation,
the constraint computes the components of the relative velocity between the two points
in the local reference system: axial (along the beam axis), radial (perpendicular to the
beam axis), and tangential (hoop direction). These three components are transfered to
the rebar-concrete interaction (RCI) model, which is implemented as a Material class.
The RCI model returns the three componenets of the stress vector in the local reference
system, which are then used to compute forces at the beam and tet nodes.

BeamTetConstraintList ‘listName’ RebarConcreteInteraction {

BeamList ‘beamListName’

TetList ‘tetListName’

RebarConcreteInteraction ‘RciModelName’

NumberOfCircumferentialConstraintsPerBeamElement 3

NumberOfAxialConstraintsPerBeamElement 2

RebarRadius 10 mm

}

15.4.3 Elastic formulation with slippage and volumetric effects

This formulation has not been implemented at this time. When implemented, in addition
to the relative velocity vector, a volumetric expansion term is also passed to the RCI
model. The model returns a velocity vector as well as a pressure term which is applied
to the tetrahedral element.

BeamTetConstraintList ‘listName’ RebarConcreteInteractionVE {

BeamList ‘beamListName’

TetList ‘tetListName’

NumberOfCircumferentialConstraintsPerBeamElement 3

NumberOfAxialConstraintsPerBeamElement 2

RebarRadius 10 mm

Material ‘RciModelName’

}

15.5 Beam-Hex Constraints

15.5.1 Elastic formulation

BeamHexConstraintList NAME ElasticPenalty {

BeamList RBRS

HexList CNCR
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Stiffness BasedOnTimeStep 0.002 ms

}

15.5.2 Elastic formulation with slippage

BeamHexConstraintList NAME RebarConcreteInteraction {

BeamList RBRS

HexList CNCR

NumberOfCircumferentialConstraintsPerBeamElement 3

NumberOfAxialConstraintsPerBeamElement 2

RebarRadius 10 mm

Material INTR

}

15.5.3 Elastic formulation with slippage and volumetric effects

BeamHexConstraintList NAME RebarConcreteInteractionVE {

BeamList RBRS

HexList CNCR

NumberOfAxialConstraintsPerBeamElement 2

RebarRadius 10 mm

Material INTR

}

15.6 Beam-Particles Constraints

The beam-particles constraint is designed to constrain the motion of strings of beam
elements to the motion of a adjacent particles. It is specifically intended to model rebar-
concrete interaction, where concrete is modeled using a tetrahedral LDPM mesh. The
node-particles constraint can be used for this purpose; however, the spacing of the con-
straints is dictated by the length of the beam finite elements. In the beam-particles
constraints, we specify a number of points along the axis or on the surface of each beam
element and we enforce constraints at all these points. The main obvious advantage of
this formulation is that we can make the spacing of the constraints smaller than the
average distance between particles. In this way, the forces transmitted from the rebars
are distributed in a smoother fashion to the concrete. A more significant advantage is the
directionality provided by the beam elements. This makes is possible to model slippage
in the axial direction, at least in the small deformation range. Currently, one formulation
is available:

• RebarConcreteInteraction

15.6.1 Elastic formulation with slippage

In this formulation, the beam element is assumed to be cylindrical, which is a good
approximation for conventional rebars. The cylindrical surface of each beam element is

180



approximated as a two-dimensional array of rectangular facets, in the axial and hoop
directions. Constraints are applied at the center points of these facets between the mate-
rial point associated to the beam and the corresponding material point in the concrete.
During the simulation, the constraint computes the components of the relative velocity
between the two material points (beam point and concrete point)in the local reference
system of the beam element: axial (along the beam axis), radial (perpendicular to the
beam axis), and tangential (hoop direction). These three components are transfered to
the rebar-concrete interaction (RCI) model, which is implemented as a Material class.
The RCI model returns the three componenets of the stress vector in the local reference
system, which are then used to compute forces at the beam nodes and particles.

BeamParticlesConstraintList ‘listName’ RebarConcreteInteraction {

BeamList ‘beamListName’

ParticleList ‘particleListName’

RebarConcreteInteraction ‘RciModelName’

NumberOfCircumferentialConstraintsPerBeamElement 6

NumberOfAxialConstraintsPerBeamElement 3

RebarRadius 10 mm

WriteStateVariableDataDumpEvery 0.01 ms

UpdateInterval 0.001 ms // [1]

MaximumDistance 1.2 mm // [1]

[ DetectionDistance 40 mm // [2]

[ ParticlesFullyOutsideBeam ] // [3]

}

[1] The UpdateInterval and MaximumDistance parameters were added in January 2014
to treat very large deformations associated to fiber pull-out. The UpdateInterval pa-
rameter controls how often the associations of particles to facets is reassessed. The
MaximumDistance parameter is used to determine whether a facet is interacting with
any particles. In other words, if the distance between the closest particle and the center
of a facet is greater than the MaximumDistance, then that facet is no longer interacting
with concrete (pull-out).
[2] The DetectionDistance optional parameter was added in March 2014. ... ...
[3] The ParticleFullyOutsideBeam optional command was added in March 2014. By
default, the detection algorithm ensures that the centers of the particles are outside the
cylindrical volumes of the beam elements. By using this command, we ensure that the
entire particles are outside the volumes of the beams.

Data Dump Format

The data generated when the WriteStateVariableDataDumpEvery command is used
consists of an initial file containing geometry data and a sequence of files containing
state variable information at periodic time intervals. The names of the initial geometry
files follow this convention:

bpL-‘listName’-SVD-‘mpiRank’.geo
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There will be a single file for serial or OpenMP executions and multiple files for MPI
execution. Each file contains geometric information of the facets forming each constraint
using the following format:

j fA naf ncf

// j: constraint index

// fA: facet area

// naf: number of facets in axial direction

// ncf: number of facet in circumferential direction

// Loop over facets

ja jc nx ny nz cx cy cz // ja: facet index in axial direction

// jc: facet index in circumferential direction

// nx, ny, nz: normal to facet

// cx, cy, cz: coordinates of facet ceter point

The names of the files periodically generated which contain state variable data has the
form:

bpL-‘listName’-SVD-‘mpiRank’.‘time’

where time is the simulation time in microseconds. For each time, there will be a single
file for serial or OpenMP executions and multiple files for MPI executions. Each file
contains state variable information using the following format:

j // j: constraint index

// Loop over facets

ja jc sv[0] sv[1] . . . sv[nsv] // ja: facet index in axial direction

// jc: facet index in circumferential direction

// sv: state variable array for facet (ja,jc)

Plot Options

State variables, such as stress components and slippage components, can be displayed
as contour plots. All facets of the beam-concrete interaction model are displayed and
painted according to the value of the chosen state variable. For Paraview files all state
variables are automatically written to the plot-files. For Quasar files, you must choose a
contour variable per plot element, but you can insert multiple plot elements with different
contour variables in the same plot list, as shown in the example below. In this case, you
have to enable and/or disable plot elements during viewing, so that only one can be
shown at a time.

PlotList BPCplot Paraview {

. . .

bpL ‘listName’ { }

}
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PlotList PLOT Quasar {

. . .

bpL ‘listName’ {

ContourVariable 1

[ RangeMinValue 0. psi ]

[ RangeMaxValue 100. psi ]

}

bpL ‘listName’ {

ContourVariable 2

}

}

A new plotting option was inserted in January 2014 for visualizing the connection between
particles and facets. With this option, it is possible to generate plots where the active
facets are painted with the same color as the particles they are interacting with. Colors
range from red to yellow to green to blue. Facets that are no longer connected to a
particles are painted in gray.

PlotList ‘plotListName’ Quasar {

. . .

bpL ‘listName’ { ActiveFacets }

}

Data Dump

xx xx

15.7 Constraint List

This list includes a variety of miscellaneous constraints. It is somewhat different than
other lists in the sense that it can group objects that are non-homogenous. It was done
that way because there are many possible ways constraints can be formulated and it
seemed that there would be a proliferation of lists if every type of constraint would be
given its own list.

ConstraintList ‘ListName’ {

SlaveNodeMasterNodesConstraint { ... }

SlaveNodeMasterNodeConstraints { ... }

SlaveRigidBodyMasterNodeConstraint { ... }

SlaveNodeMasterEdgeConstraint { ... }

SlaveRigidBodyMasterEdgeConstraint { ... }

NodeNodePenaltyConstraint { ... }

HingePenaltyConstraint { ... }

}
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15.7.1 Slave Node - Master Node Constraint

This list is designed to create a series of master-slave constraints that tie overlapping
nodes from different lists. One list is the master list and the other is the slave list. A
tolerance must be provided. The tolerance should be a very small length, such that
the distance of the overlapping nodes is less than the tolerance. Optionally, only the
translational degrees of freedom can be constrainded, while the two nodes can rotate
independently.

ContraintList ‘ListName’ {

SlaveNodeMasterNodeConstraints {

SlaveNodeList ‘ListName’

MasterNodeList ‘ListName’

Tolerance 1. mm

[ TranslationsOnly ]

[ Debug ]

}

}

15.7.2 Slave Rigid Body - Master Node Constraint

* * * T O B E I M P L E M E N T E D * * *
This constraint is designed to constrain a slave rigid body to translate with and/or

rotate around a master node.

SlaveRigidBodyMasterNodeConstraint {

RigidBody ‘RigidBodyName’

MasterNode ‘NodeListName’ cl 5. cm 2. cm 5. cm

Set Translations XXX // constrained translations

Set Rotations OOO // free rotations

}

15.7.3 Slave Node - Master Nodes Constraint

This constraint is designed to constrain a slave node from one node list to a set of nodes
from another list. The master nodes are the nodes that lay in a sphere centered at the
slave node with a given radius. The slave node is tied to move with the average velocity
of the master nodes.

SlaveNodeMasterNodesConstraint {

SlaveNode ‘NodeListName’ 14

MasterNodeList ‘NodeListName’

Radius 5.

}
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15.7.4 Slave Node - Master Edge Constraint

This type of constraint ties a node to a point on an edge. The constraint is of the master-
slave type. The constraint interpolates coordinates, velocities, and rotations of the slave
node. Rotation constrains can be disabled to simulate a spherical bearing. Alternatively
only the rotation along the edge can be free to simulate a wheel spinning on an axle.
MARS searches automatically for constraints: the nodes of a node-list that are within a
given tolerance from the edges of an edge-list are constrained.

ConstraintList ‘ListName’ {

SlaveNodeMasterEdgeConstraint {

NodeList ‘ListName’

EdgeList ‘ListName’

Tolerance 1. mm

[ FreeRotations ]

[ AxialSpinning ]

}

}

15.7.5 Slave Rigid Body - Master Edge Constraint

This type of constraint ties the center of a rigid body to a point on an edge. The
constraint is of the master-slave type. The constraint interpolates coordinates, velocities,
and rotations of the slave rigidbody. Rotation constrains can be disabled to simulate a
spherical bearing. Alternatively only the rotation along the edge can be free to simulate
a wheel spinning on an axle. MARS searches automatically for constraints: the edge that
contains the rigid body within a given tolerance is used as master edge.

ContraintList ‘ListName’ {

SlaveRigidBodyMasterNodeConstraint {

RigidBody ‘RigidBodyName’

EdgeList ‘ListName’

Tolerance 1. mm

[ FreeRotations ]

[ AxialSpinning ]

}

}

15.7.6 Node - Node Penalty Constraint

This type of constraint ties selected degrees of freedom of two nodes. The two nodes are
supposed to overlap at time 0. For pratical purposes, a tolerance is specified via input
and the distance between the two nodes must be less than the tolerance. The penalty
forces are computed incrementally using velocities, e.g.:

Fx(t+ dt) = F (x) +K(vxI − vxJ)dt
where K is the penalty spring stiffness
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ConstraintList ‘ListName’ {

NodeNodePenaltyConstraint {

// 1. select first node

Node ‘ListName’ ‘nodeIndex’

// or

Node ‘ListName’ cl 5 cm 0. cm 8 cm.

// 2. select second node

Node ‘ListName’ ‘nodeIndex’

// or

Node ‘ListName’ cl 5 cm 0. cm 8 cm.

// 3. Enter penalty spring stiffness

Stiffness 1.4e8 dyn/cm

// 4. Enter tolerance

Tolerance 1. mm // [1]

// 5. Select one of the

Translations XXX

Rotations OOO

}

}

This type of constraint ties selected degrees of freedom of two nodes to move together.
together.

15.7.7 Hinge Penalty Constraint

This type of constraint ties two nodes so that they can rotate around a corotational axis.
The two nodes are supposed to overlap at time 0. For pratical purposes, a tolerance
is specified via input and the distance between the two nodes must be less than the
tolerance. The penalty forces are computed incrementally using velocities. The hinge
direction rotates with the average rotation rate of the two nodes

ConstraintList ‘ListName’ {

HingePenaltyConstraint {

// 1. select first node

Node ‘ListName’ ‘nodeIndex’

// or

Node ‘ListName’ cl 5 cm 0. cm 8 cm.

// 2. select second node

Node ‘ListName’ ‘nodeIndex’

// or

Node ‘ListName’ cl 5 cm 0. cm 8 cm.

// 3. Enter penalty spring stiffness

Stiffness 1.4e8 dyn/cm

// 4. Enter tolerance

Tolerance 1. mm // [1]
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// 5. Enter hinge axis direction

HingeAxis 0.1 0.3 0.

// 6. Enter axial motion flag [optional, def = false]

AxialMotion true

}

}

This constraint make sense for nodes that have rotations

15.7.8 Node - Edge Slideline

This type of constraint forces a single node to move along a line. The line may consists
of a single edge or multiple edges liked together head-to-tail. The slideline is prescribed
using ... ...

ConstraintList ‘ListName’ {

NodeEdgeSlideLine {

// 1. select either an edge or beam list

EdgeList ‘ListName’ BeamList ‘ListName’

// 2. select a slave node

Node ‘ListName’ ‘nodeIndex’

// or

Node ‘ListName’ cl 5 cm 0. cm 8 cm.

Tolerance 1. mm

// 3. Enter free rotations to disengage node rotations

[ FreeRotations]

}

}

15.7.9 Node-Edge Penalty Slideline

This type of constraint forces a single node to move along a path, also denoted as ‘slide-
line’. The slideline may consists of a single edge or multiple edges linked together head-
to-tail. The slideline is prescribed using an edge or beam list. The code automatically
finds the point on the slideline closest to the node. If the initial distance of the node
from the slideline is greater than the value entered in Tolerance, then an error message
is printed. During the calculation, forces perpendicular to the slideline and proportional
to the distance between node and slideline are generated to bring back the node onto the
slideline. No axial force is generated.

ConstraintList ‘ListName’ {

NodeEdgePenaltySlideLine {

// 1. select either an edge or beam list

EdgeList ‘ListName’

BeamList ‘ListName’

// 2. select a slave node

187



Node ‘ListName’ ‘nodeIndex’

// or

Node ‘ListName’ cl 5 cm 0. cm 8 cm.

Tolerance 1. mm

// 3. Enter penalty spring stiffness

Stiffness 1.e6 lbf/in

}

}

This formulation can also be used to constrain a fiber or a rebar embedded in concrete
to slide inside the tunnel it was cast into. Since it does not include axial effect, it should
be used in conjunction with a particle-fiber interaction list as discussed below. For these
types of application, do the following:

1. Let FiberNodes be the list of nodes used to specify the fiber in beam list Fiber.
2. Create a list of nodes TunnelNodes and edge elements Tunnel which overlap the

lists above. In other words the nodes in TunnelNodes have initially the same coordinates
as those of FiberNodes. These define the tunnel where the fiber slides through.

3. Tie the nodes in the TunnelNodes list to the solid elements of the concrete using
a penalty formulation

4. Define the constraints, one for each node in the FiberNodes list.

NodeEdgePenaltySlideLine ‘ListName’ {

NodeEdgePenaltySlideLine {

EdgeList Tunnel

Node FiberNodes 1

Stiffness 1.e6 lbf/in

}

NodeEdgePenaltySlideLine {

EdgeList Tunnel

Node FiberNodes 2

Stiffness 1.e6 lbf/in

}

. . .

}

At this time, it is not possible to constrain all the nodes of the fiber to the edges of the
tunnel.

15.8 Particle-Rebar Interaction List

The particle-rebar interaction list is intended to couple rebar embedded in concrete
LDPM regions. The input consists of the list of nodes which are used for defining the
LDPM region and the list of rebar elements. The concrete-rebar interaction model is
entered as a ‘Material’. Note that ... The rebar radius must be explicitely entered.
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The constraint detection phase identifies pairs of particles and rebar finite elements
that interact with each other. This operation is performed once at the beginning of a sim-
ulation. The particle-rebar interaction constraint is then applied to each pair. Currently,
we select all particles that are suitably close to the rebar elements. More specifically,
we do not include particles whose spherical volume overlaps the cylindrical volume oc-
cupied by the rebars. We do include however, particles when their gap from the rebar
is within a range specified by the analyst using the ‘MinimumGap’ and ‘MaximumGap’
commands. The rebar overlapping particles are connected to the other particles as if
the rebar does not exist. Their effect is accounted for in the bond parameters when
parameter calibration is performed.

The constraint formulation ties a single particle to a single beam element defined
by its two nodes. The formulation consists of two parts: a kinematics part where the
local deformation state is computed from particle/node velocities and rotations, a force
reduction part where local stresses are used to compute forces and moments at the particle
and beam nodes. nodes.

ParticleRebarInteractionList Constraints {

NodeList Particles

BeamList Rebars

Material ConcRebarInt

RebarRadius 0.6 cm

MinimumGap 0.1 cm

MaximumGap 2.0 cm

EquilibratedAreas // opt

}

15.9 Particle-Fiber Interaction List

The particle-rebar interaction list is intended to couple rebar embedded in concrete
LDPM regions. The input consists of the list of nodes which are used for defining the
LDPM region and the list of rebar elements. The concrete-rebar interaction model is
entered as a ‘Material’. Note that ... The rebar radius must be explicitely entered.

The constraint detection phase identifies pairs of particles and rebar finite elements
that interact with each other. This operation is performed once at the beginning of a sim-
ulation. The particle-rebar interaction constraint is then applied to each pair. Currently,
we select all particles that are suitably close to the rebar elements. More specifically,
we do not include particles whose spherical volume overlaps the cylindrical volume oc-
cupied by the rebars. We do include however, particles when their gap from the rebar
is within a range specified by the analyst using the ‘MinimumGap’ and ‘MaximumGap’
commands. The rebar overlapping particles are connected to the other particles as if
the rebar does not exist. Their effect is accounted for in the bond parameters when
parameter calibration is performed.

The constraint formulation ties a single particle to a single beam element defined
by its two nodes. The formulation consists of two parts: a kinematics part where the
local deformation state is computed from particle/node velocities and rotations, a force
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reduction part where local stresses are used to compute forces and moments at the particle
and beam nodes. nodes.

ParticleFiberInteractionList Constraints {

NodeList Particles

BeamList Fibers

Material ConcFiberInt

FiberRadius 0.6 cm

MinimumGap 0.1 cm

MaximumGap 2.0 cm

Verbose // [1]

// Use either ‘EquilibratedArea’ or ‘TiledAreas’

EquilibratedAreas // [2]

TiledAreas 24 // [3]

ProjectedNormalAreas

DisableInternalFacets // [4]

}

[1] The Verbose command should be used only for small problems and is intended for
debugging purposes. When ‘Verbose’ is entered, Mars will print a detailed status of all
the particles interacting with each of the fiber elements. elements.
[2] The EquilibratedArea command is used for computing the interaction areas using
the criteria described in the notes.
[3] The TiledAreas command computes interaction areas by subdividing the cylindrical
surface of the fiber/rebar into tiles in the axial and cylindrical direction. Each area
is assigned to one of the particle-edge contraints. The integer following the keyword
indicates the number of areas in the hoop direction. The number of areas in the axial
directions is computed by using the equation:
[4] The DisableInternalFacets is an optional command for disabling the LDPM facets
whose centers lay inside the cylindrical volume of the fibers. These facets will not con-
tribute any internal force.

nA = L/(2πR/nH
where R is the fiber radius, L is element length, and nH is the number of circumfer-

ential areas specified above via input.
Warning: If an element is partially embedded in concrete, Mars distributes its whole

surface areas to the particles interacting with that element. On the ‘to do’ list, there
is the action item for computing what portion of a partially embedded fiber element is
inside the concrete. If fibers are entirely embedded in concrete, this current formulation
is adequate. For single fiber pull-out tests, subdivide a fiber so that there are no elements
that are partially embedded: in other words, a node of the fiber sequence should just be
slightly outside the concrete surface.

15.10 Bolt List

The BoldList is used for defining a set of hex head bolts that share the same dimensions.
Each bolt is explicitely modeled using three 4-node shell elements for the hex head and a
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sequence of beam elements for the stem. If nuts are used to clamp sheets of metal, then
the nut is modeled using three 4-node shell elements placed at the other end of the stem.
As such, the BoltList acts as a mesh generation tool. Bolts interact with the rest of the
structure through contact conditions. If bolts are screwed in into solid threaded pieces,
then node/solid-element constraints are used to enforce the condition.

BoltList BLTS {

Material STEL

[ NodeList ‘Nodes’ ] // [1]

[ ShellList ‘Shells’ ] // [1]

[ BeamList ‘Beams’ ] // [1]

Diameter 0.3 in

StemLength 1.0 in

BeamInStem 4

HeadThickness 0.2 in

HeadDiameter 0.6 in

[ Nuts ] // optional

LengthUnits in

ReadObjects 345

// c0x, c0y c0z: origin of the stem

// len: length of the stem

// dcx, dcy, dcz: direction of the stem

// n: number of beam elements along the stem

// j c0x c0y c0z len dcx dcy dcz n

1 0.0 10. 1. 0.6 1. 0. 0. 3

. . .

}

[1] If any of these lists is omitted, then BoltList generates it automatically with the
proper geometric parameters. In general, it is better not to define these list previously
and let BoltList create them. They will have the same name as the name used for the
BoltList.

It is possible to prestress the connections (in some cases) and/or allow the bolt stem
to fracture in shear or tension. Currently, the pre-stress can be set for screwed-in bolts
only. The step failure criterion is specified at the BeamList level:

BeamList BLTS {

Cracking { fail 0.15 }

}

16 Contacts

16.1 Contact Models

Contact models are employed by the contact formulations (e.g. node-face, node-node,
edge-edge, etc) to compute contact forces based on the relative velocity of the material
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points associated to the two objects at the point of contact. Contact models have the same
function as material models have in element formulations. Contact model commands are
embedded in the contact lists (see examples)

The contact algorithms in MARS provide multiple options for enforcing contact con-
ditions between parts of the model. MARS contacts are imposed on three classes of
geometric entities: points, edges, and triangular facets. Since the objective of contact
conditions is to avoid penetration, these geometric entities are given a solid outer layer of
thickness t. The value of t, which may vary for different entities, will be discussed later.
Thus, for the purpose of contact detection, a point is represented by a sphere of radius
t; an edge is represented by a cylinder of radius t with hemispherical ends; a triangular
facets is represented by a solid body similar to a Vicks cough drop with thickess 2t, semi-
cylindrical edges and spherical corners. Note that a quadrilateral facet can be reduced to
two triangular facets; therefore, we don’t need to include the quadrilateral facet as one
of our geometric base entities. The following interaction combinations are possible:

• point interacting with another point (sphere/sphere interaction)

• point interacting with an edge (sphere/cylinder interaction)

• point interacting with a facet (sphere/cough-drop interaction)

• edge interacting with another edge (cylinder/cylinder interaction)

All other interactions, such as edge/facet and facet/facet interactions can be accounted
for using the interactions above. Specifically, edge/facet is enforced using point/facet
interaction for the edge end points and edge/edge interaction for the facet edges; similarly
for the facet/facet interaction. In the spirit of the MARS architecture, where consistent
objects are grouped in lists, contact conditions are also implemented in the form of lists.
This is better explained with an example. Let’s consider the interaction between two non-
adjoint meshes representing solid bodies B1 and B2. Let F1 be the list of all triangular
facets on the external surface of B1, E1 be the list of all edges in F1 and N1 the list of
all nodes in F1. Use the same defintions for F2, E2, and N2. Then, contact between B1
and B2 can be implemented using one or more interaction lists:

• ContactList1 (point/facet): nodes N1 interacting with facets F2,

• ContactList2 (point/facet): nodes N2 interacting with facets F1,

• ContactList3 (edge/edge): edges E1 interacting with edges E2.

Although any one list from the three lists above can enforce some form of penetration
prevention, the combination of all three of them provides the strongest form of prevention.

Each contact list consists of a set of interacting pairs. For example, an interacting
pair in ContactList1 consists of a node from N1 interacting with a facet from F2. A
contact list maintains the list of all pairs that are ‘close’ to each other and may come
into contact or are already in contact. A contact lists implements two main tasks: (1)
contact detection, and (2) penetration prevention.
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The contact detection task is performed at time zero and periodically with time
interval dtu specified as a user-input parameter. Its objective is to determine which pairs
of objects are ‘close enough’ and need to be monitored (added to the contact list). This
is automatically done by a search algorithm which computes the distances between the
centers of two objects and saves the object-pairs whose distances is less than a ‘detection
distance’ d specified as a user-input parameter. The frequency of the contact detection
updates and magnitude of the detection distance parameter are strictly inter-related and
should be set by the user as a function of the problem to be solved. Different strategies
will be discussed after the paragraph on penetration prevention.

The penetration prevention task is performed at every step. Its function is to de-
termine whether the two objects of a contact pair come into contact with each other.
This happens when the two outer surfaces (spheres, cylinders, solid facets) of the two
objects start overlapping. In this case, the contact algorithm computes contacts forces
in the form of normal contact forces, tangential friction forces, rolling moments, etc.
These forces and moments are applied at the nodes of the objects interacting with each
other. The formulation for computing penetration between two objects depends on the
type of contact list (point/point, point/edge, point/facet, edge/edge). However, all four
formulations results in computing normal and tangential relative velocities, and relative
rotation rates. Velocities and rotation rates are used in contact models to integrate the
contact forces using incremental formulations. Several contact models are available and
are discussed in the next section.

Typically, a contact detection update is significantly more expensive than each pene-
tration prevention calculation which is performed at every step. For quasi-static problems
where the parts in contact don’t move significantly with respect to each other, it is suffi-
cient to perform contact detection task once during the initialization phase (the update
time interval can be set to a very large value); furthermore, it is sufficient to set the detec-
tion distance parameter to a value of the order of the maximum displacements expected
during the simulation. The update strategy is completely different for very dynamic
problems, where two parts move towards each other at high speed. In this scenario, we
need to choose a combination of update interval and detection distance such that we are
able to capture all contacts as the parts get close to each other. Note that increasing
the frequency of contact updates makes it possible to keep the detection distance to a
smaller value, which in turn limits the number of potential contact updates that needs to
be monitored in the list. In case the user is not sure if the parameters selected guarantee
detection of all contacts, the simulation can be performed with different values of the
parameters and the results do not change when both sets of parameters are adequate.
If V is the relative velocity between the two parts, then the following expression can be
used to set the update interval dtu and detection distance d: d / dtu > V, in other words
the two parts cannot get closer to each other than the detection distance d during the
time interval dtu.

In this section, we first discuss the various contact models and then the four contact
formulations.
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16.1.1 Penalty contact model

The penalty-function contact model provides the simplest method for computing the
normal contact force Fn as a function of penetration p. The method requires a single
parameter, the stiffness Kl of the linear spring used in the equation. As an alternate way
of computing stiffness, a time step may be entered. This time step is used in conjunction
with the smallest mass of the nodes participating in the contact to define the penalty
spring stiffness.

Fn = K * p.

The input commands can be enter either in a single line

ContactForce Penalty { Kl 1e6 N/m }

ContactForce Penalty { dt 0.001 ms }

or in multiple lines

ContactForce Penalty {

SpringStiffness 1.e6 N/m

}

ContactForce Penalty {

StiffnessBasedOnTimeStepOf 0.001 ms // [1]

}

[1] The smaller the time step, the stiffer the penalty springs are. One can check the
amount of maximum penetration using time history commands in the contact lists.

ContactForce PenaltyEP

16.1.2 Penalty-hysteresys contact model

The penalty-function with hysteresis contact model provides the capability of modeling
non-elastic contacts, where some energy is dissipated. This is accomplished by using
different paths for loading and unloading. The initial loading follows a linear force-
penetration relationship

Fn = K * p.

Unloading follows a different relationship

Fn = C * p^b

where b is a non-dimensional parameter which is greater or equal 1,

C = FX / pX^b is constant,

pX is the penetration when unloading begins,

FX is the contact force when unloading begins.
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For b=1 the unloading curve is the same as the loading curve and there is no hysteresis.
For b=2, the unloading curve is a parabolic curve with apex at the origin and intersecting
point (pX, FX). The area between the loading and unloading curve represents the energy
dissipated in the loading-unloading event. The larger the value of b, the more energy is
dissipated.

Reloading during the unloading phase is ruled by a special relationship. Reloading
follows a steeper line, with the stiffness constant defined as the tangent to the unloading
curve at pX

Fn = Kr * (p - pY)

where pY is the penetration when reloading begins, begins,

Kr = b * C * pX^(b-1) is the stiffness

The normal force Fn cannot exceed Fn = K * p value; in other words, the initial loading
curve acts as an upper envelope.

The input commands are either

ContactForce PenaltyHysteresis { Kl 1e6 N/m [ Beta 3 ] }

or

ContactForce PenaltyHysteresis {

LinearSpring 1.e6 N/m

[ Beta 3. ]

}

16.1.3 Hertz contact model

The Herz contact force computes the normal contact force Fn as a function of penetration
using the well known equation

Fn = H p^1.5

The constant H is typically defined as a function of Young’s modulus E and Poisson’s
ratio pr

H = 2/3 * E / (1-pr^2).

The input commands can be enter either in this format

ContactForce Hertz { E 29e6 psi pr 0.3 }

or

ContactForce Hertz {

YoungsModulus 29e6 psi

PoissonsRatio 0.3

}

ContactForce HertzTU
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16.1.4 Hertz-hysteresis contact model

The Hertz with hysteresis contact model provides the capability of modeling non-elastic
contacts, where some energy is dissipated. This is accomplished by using different paths
for loading and unloading. The initial loading follows the conventional Hertz relationship

Fn = H * p^1.5.

Unloading follows a different relationship

Fn = C * p^b

where b is a non-dimensional parameter which is greater or equal 1.5,

C = FX / pX^b is constant,

pX is the penetration when unloading begins,

FX is the contact force when unloading begins.

For b=1.5 the unloading curve is the same as the loading curve and there is no hysteresis.
For b=2, the unloading curve is a parabolic curve with apex at the origin and intersecting
point (pX, FX). The area between the loading and unloading curve represents the energy
dissipated in the loading-unloading event. The larger the value of b, the more energy is
dissipated. A default value of 3 is used when no value of b is entered.

Reloading during the unloading phase is ruled by a special relationship. Reloading
follows a steeper line, with the stiffness constant defined as the tangent to the unloading
curve at pX

Fn = Kr(p− pY )
where pY is the penetration when reloading begins, begins,

Kr = b * C * pX^(b-1) is the stiffness

The normal force Fn cannot exceed the Fn = Hp1.5 value; in other words, the initial
loading curve acts as an upper envelope.

The input commands can be enter either in this format

ContactForce HertzHysteresis { E 29e6 psi pr 0.3 beta 3}

or

ContactForce HertzHysteresis {

YoungsModulus 29e6 psi

PoissonsRatio 0.3

Beta 3.

}
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16.1.5 Stick-slip friction model

The ‘stick-slip’ friction model is an algorithm designed for computing tangential contact
forces between two objects perpendicular to the normal direction at the point of contact.
The tangential force is computed incrementally based on the tangential relative motion of
the two objects at the point of contact and a penalty stiffness parameter. The tangential
force is limited either by the static friction force if the objects are sticking, or the kinetic
friction force if the objects are slipping. When the objects are sticking and the tangential
force exceed the static friction force, the contact is assumed to convert from sticking to
slipping. When the objects are slipping and the tangential force becomes smaller than
the kinetic friction force, the contact is assumed to convert from slipping to sticking. The
static friction force is defined as

Fsf = sfc * Fn

Fsf = sfc * Fn

Fkf = kfc * Fn

where sfc is the static friction factor coefficient and Fn is the normal contact force inde-
pendently computed in one of the contact models described above. The kinematic friction
force is defined as where kfc is the kinetic friction factor coefficient. kfc is typically less
or equal than sfc. The input commands for the friction force model are:

FrictionForce { dt 0.01 ms sf 0.3 df 0.2 }

// or

FrictionForce {

PenaltyStiffness 10 N/m // short notation: K

StaticFriction 0.3 // short notation: sf

DynamicFriction 0.3 // short notation: df

StribeckVelocity 10 m/s

dt 0.001 ms // for computing stiffness

Beta 3.

MinNormalForce 10. nN at 2 nm // f0 10. N

}

The ‘StribeckVelocity’ is an optional parameter. If entered, the kinetic friction force is
computed using the equation below below

Fkf = (kfc + (sfc-kfc)*exp(-R^2)) * Fn

where R = |dv| / Vs,

|dv| is the norm of the relative tangential slipping velocity

Vs is the Stribeck velocity

The parameter ‘Beta’ is optional and is used to ‘kill’ small residual elastic oscillations in
the elastic range when the particles are sticking in a quasi motioneless equlibrium state.
The dampening mechanism is not viscous (velocity-dependent) but hysteretic (based on
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cycle amplitude). For ‘Beta’ = 1., there is no hysteretic effect. Oscillation dampening
increases as Beta increases. Beta must be greater or equal 1. The default value is 2 to
provide some damping.

The ‘MinNormalForce’ is an optional parameter intended to approximate the effects of
‘bonding forces’ which oppose tangential motion even when the particles are not pressed
against each other. The last parameter in the line, is the maximum gap for this effect
to be included. The minimum normal force, f0, is added to the normal force when the
particles are still sticking and the gap is less than the maximum gap. This virtual normal
force increment results in a larger maximum static friction force. f0 is no longer added to
the normal force when the particles start slipping thus simulating a failure in the bonding
force. In the current formulation, f0 is added to the normal force when the slipping flag
is false; thus, if slipping stops, the bonding force is re-established. Note that the actual
normal force used in the computation of the contact force is not affected. The default
value of f0 is 0. 0.

The parameter ‘dt’ can be used for computing the penalty spring stiffness as an
alterative to the ‘PenaltyStiffness’ parameter. When ‘dt’ is selected, the value of the
penalty stiffness for each contact is computed using the equation

K = 0.5 * ms / (dt*dt)

where ms is the minimum mass of any node/particle participating in the contact

16.1.6 Tangential elasto-plastic model

The tangential elasto-plastic model is an algorithm designed for computing tangential
contact forces between two objects, in the direction perpendicular to the normal at the
point of contact. The tangential force is computed incrementally based on the tangen-
tial relative motion of the two objects at the point of contact and a penalty stiffness
parameter. The tangential force is limited by a ‘maximum allowable force’ fmx specified
via input, using a predictor-corrector approach. When the predictor exceeds fmx, the
tangential force is scaled down to fmx and slipping between the surfaces occurs. The tan-
gential force is computed only for surfaces with a gap smaller then a prescribed maximum
gap gmx. This logic is summarized in the following pseudo-code

if (gap < gmx)

ftn += K * dv * dt // increment forces

if (|ftn| > fmx)

ftn *= fmx / |ftn| // scale forces

else

ftn = 0

The input commands are

TangentialPlasticForce {

PenaltyStiffness 10 N/m // short notation: K

BoundingForce 10. nN

MaximumGap 2 nm

}
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The ‘PenaltyStiffness’ parameter is somewhat arbitrary. Physically, it represents the
small local tangential deformations that take place when shear forces are present. In some
configurations, like discrete particle models, the tangential penalty stiffness may affect
the overall elastic stiffness of the system. This may be relevant in the small deformation
range. However, the plastic behavior should not be affected significantly. The best way
to assess how sensitive results are to this parameter is to run the same case with different
values of the parameter.

The ‘MinNormalForce’ is an optional parameter intended to approximate the effects of
‘bonding forces’ which oppose tangential motion even when the particles are not pressed
against each other. The last parameter in the line, is the maximum gap for this effect
to be included. The minimum normal force, f0, is added to the normal force when the
particles are still sticking and the gap is less than the maximum gap. This virtual normal
force increment results in a larger maximum static friction force. f0 is no longer added to
the normal force when the particles start slipping thus simulating a failure in the bonding
force. In the current formulation, f0 is added to the normal force when the slipping flag
is false; thus, if slipping stops, the bonding force is re-established. Note that the actual
normal force used in the computation of the contact force is not affected. The default
value of f0 is 0. 0.

The parameter ‘dt’ can be used for computing the penalty spring stiffness as an
alterative to the ‘PenaltyStiffness’ parameter. When ‘dt’ is selected, the value of the
penalty stiffness for each contact is computed using the equation

The parameter ‘dt’ can be used for computing the penalty spring stiffness as an
alterative to the ‘PenaltyStiffness’ parameter. When ‘dt’ is selected, the value of the
penalty stiffness for each contact is computed using the equation

K = 0.5 * ms / (dt*dt)

16.1.7 Rolling resistance model

Rolling resistance is the resistance to rotational motion that occurs when two objects
roll over each other. Rolling resistance is caused by local deformations in one or both
of the objects in contact. Strictly speaking, the rolling resistance is defined as a force
that opposes the rolling motion of a round object over a flat surface. In MARS, the
term ‘rolling resistance’ is used in a more general way, where we consider the relative
rotational motion of two objects in contact. The relative rotational motion is opposed by
equal and opposite moments applied on the two objects. The relative rotational motion
is divided into two components: rolling and spinning, where spinning is aligned with the
direction parallel to the contact normal direction and rolling is perpendicular to it.

MARS implemente rolling/spinning resistance with an algorithm similar to the tan-
gential friction force algorithm. For the rolling component, a resisting rolling moment Mr
is computed by integrating the relative rolling motion dwr of the two objects multiplied
by a penalty stiffness constant Kr:

Mr = Int (Kr * dwr)

Mr is limited by the maximum allowable rolling moment Xr which is defined as
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Xr = fr * L * Fn

where fr is a ‘friction’ coefficient provided via input, L is a characteristic length computed
by the contact formulation (see below), and Fn is the normal contact force. For nano-
particle interaction L is the distance between the particle centers; for sphere-face contacts
L is the distance between the center of the ispherical particle/node and the midplane of
the face. face.

The spinning component (or twist) is treated in a similar fashion but its parameters
are defined independently.

RollingResistance { Kr .. Kt .. Fr .. Ft .. Beta .. dt .. }

// or

RollingResistance {

RollingStiffness ..

TwistStiffness ..

RollingFrictionFactor ..

TwistFrictionFactor ..

dt ..

Beta ..

MinNormalForce 10. nN at 2 nm // f0 10. N

}

The optional parameter Beta provides a certain degree of hysteretic damping for small
residual oscillations and works similar to the Beta in the friction force algorithm. No
damping for Beta = 1, progressively more damping for larger beta’s; default is beta = 2.

The ‘MinNormalForce’ is an optional parameter intended to approximate the effects
of ‘bonding forces’ which oppose diffferences in rotation rates even when the particles are
not pressed against each other. The minimum normal force, f0, is added to the normal
force resulting in a larger value for the maximum allowable rolling moment

Xr = fr * L * (Fn + f0).

The parameter ‘dt’ can be used for computing the penalty spring stiffnesss as an alterative
to the ‘RollingStiffness’ and ‘TwistStiffness’ parameters. When ‘dt’ is selected, the value
of the penalty stiffness for each contact is computed using the equation

K = 0.5 * rm / (dt*dt)

where rm is the minimum rotational mass (moment of inertia) of any node/particle
participating in the contact

In the current version, the stiffness parameters are entered with no units, which makes
this portion of the input, unit dependent. This will be corrected in future versions.

The MARS rolling resistance algorithm works in conjunction with the friction force
algorithm to reproduce the resistive forces implied in the conventional definition of ‘rolling
resistance’. For example, the rolling resistance Fr (which is a force in the conventional
definition) of an ordinary car tire on sand is approximately 0.3 time its weight W
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Fr = 0.3 * W.

In MARS, this force is obtained by excercising both friction and rolling resistance models.
The rolling resistance algorithm applies a resistive moment to the wheel equal to

Mr = 0.3 * Rw * W

This moment tends to reduce the wheel rotation rate and this in turn increase the tan-
gential force at the wheel to a force of Ft = 0.3 * W, which is the rolling resistance force
given by the conventional definition. The static and kinetic friction coefficients must be
at least 0.3 in the MARS friction model for this to work. [The above discussion does
not take into acount the rotational inertia of the tire.] Note however, that the MARS
approach is capable or modeling not only the case of a tire rolling over sand with no
apparent slippage, but also the more general cases where a tire slips on sand.

16.2 Node-Node Contact List

The node contact makes it possible to detect contacts between nodes/particles from
a single node-list or two node-lists. For the purpose of contact, a dimensionless node
takes a spherical shape. Contact begins when the external spherical surfaces of two
nodes/particles start penetrating each other.

NodeNodeContactList ‘ContacListName’ {

// variables with the % sign inherit defaults from control parameters

// 1. Define node/particle lists

NodeList ‘FirstNodeListName’

NodeList ‘SecondNodeListName’

// 2. Specify optional dimension controls

Node1Thickness 0.4 cm // %

Node2Thickness 0.2 cm // % // if nodes are particles, node thickness is the larger of tnX and node radius

// select one of the three contact methods

DetectionDistance 0.6 cm // %

// 3. Enter contact models, see previous sections

ContactForce PenaltyHyst { . . . }

FrictionForce { . . . }

RollingResistance { . . . }

UpdateInterval 0.000010 s // %

Debug 6

}

When two node-lists are defined, then contact conditions are detected between nodes
from the first list and nodes from the seconds list, but not between nodes within the
same list. If contacts have to be detected between nodes/particles which belong to a
single list, then only one ‘NodeList’ must be specified. For example, if we have two
particles lists, red particles and blue particles and we want to be able to detect contacts
between all particles independently of color, we need three contact lists
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NodeNodeContactList BlueRedContacts {

NodeList BlueParticles

NodeList RedParticles

. . .

}

NodeNodeContactList BlueOnlyContacts {

NodeList BlueParticles

. . .

}

NodeNodeContactList RedOnlyContacts {

NodeList RedParticles

. . .

}

There are some rules regarding the size of the nodes and particles. If one of the node-lists
consists of spherical particles with finite radii, there is no need to specify a ‘NodeThick-
ness’ for that list. However, if a ‘NodeThickness is specified, MARS will take the larger
value between the actual particle radius and the NodeThickness parameter. If the node
thickness is not specified and the node-list consists of point-like nodes, then their radius
is zero. Contact can be enforced as long as the other list has spherical nodes with finite
radii. It is not possible to enforce contact conditions between two nodes, both of which
have zero radii.

NodeNodeContactList GRNL {

GranuleList GRNS

. . .

}

16.2.1 Time Histories

The variables ’X-Force’, ’Y-Force’, and ’Z-Force’ produce the sum of all contact forces
in each direction. The variable ‘NumberOfContacts’ gives the total number of potential
contacts being monitored. The variable ‘NumberOfActiveContacts’ gives the number of
nodes that are actually in contact.

TimeHistoryList ‘ListName’ {

. . .

ncL-‘ListName’ X-Force

ncL-‘ListName’ Y-Force

ncL-‘ListName’ Z-Force

ncL-‘ListName’ InternalWork

ncL-‘ListName’ NumberOfContacts

ncL-‘ListName’ NumberOfActiveContacts

}
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16.3 Edge Contact List

The edge-edge contact makes it possible to enforce contact conditions between edges,
either from the same list or from two different lists. For the purpose of contact, an edge
takes a three dimensional shape consisting of a cylinder capped by two hemispherical
surfaces, the shape of some commonly found pills. The hemispherical surfaces are cen-
tered at the two nodes defining the edge. The radius of the cylinder and hemispherical
surfaces is either provided by the edge lists or defined via input. Contact between two
edges begins when the exernal surfaces of the associated 3-D shapes start penetrating
each other. It is possible that in some cases, edges cut across each other. Here are some
scenarios:

• The edges are thin (small radii) and the maximum contact force that can be gen-
erated (Fn,max = K(r1 + r2)) is less than the contact force required to prevent
crossing. Remedy: increase penalty stiffness.

• The relative velocity of the edges is so large and the time step so coarse, that the
contact algorithm does not have a chance to work. Remedy: reduce time step.

Although it would be possible to insert logic in the code to detect this scenarios, the
computational cost would be considerable. It make more sense for the user to be aware
..

The input commands for the edge-edge contact list take the format

EdgeEdgeContactList ‘ListName’ {

// variables with the % sign inherit defaults from control parameters

// 1. Select lists

EdgeList ‘FirstEdgeListName’

EdgeList ‘SecondEdgeListName’

// 2.

Edge1Thickness 0.4 cm // minimum radius for edges of list 1 {1} %

Edge2Thickness 0.2 cm // minimum radius for edges of list 2 {1} %

// 3. Define detection distance

DetectionDistance 0.6 cm // {2} %

// 4. Define update interval

UpdateInterval 0.000010 s // [6] discontinued Jun-2011

MinimumDistance 0.1 cm

// 5. Enter contact models {3}

ContactForce PenaltyHyst { . . . }

FrictionForce { . . . }

RollingResistance { . . . }

// 6. Other commands

WritePlotFile {4}

Debug 6

}
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[1] The Edge1Thickness parameter is used to provide a minimum edge radius for cal-
culating the gap between two edges. The distance ‘dst’ between two edges is defined as
the shortest distance between any point on edge 1 and any point on edge 2. The ‘gap’ is
defined as

gap = dst - R1 - R2

where R1 is the radius of edge 1 and R2 is the radius of edge 2. R1 is the maximum of
the actual edge radius r1 and the edge thickness T1

R1 = max(r1, T1)

The edge radius r1 is typically defined by the properties of edge list 1. Similar equations
hold for R2. If the radii have been specified in the edge lists, the Edge1/2Thickness

command can be omitted. At least one of the two lists must have a postive radius.
[2] The detection distance Dd for edge-edge contacts is used for selecting edge-edge

pairs which are close enough that may come into contact. In this version, an edge-edge
pair is selected when

dst = Dd + R1 + R2

using the definitions for ‘dst’, ’R1’, and ’R2’ from [1].
[4] The WritePlotFile command is used to generate a Quasar plot file that visualize

the detected edge contacts at time 0. The plot contains only the edges that are used
in the contacts using the plot attributes (color and radii) defined in the respective edge
lists. The files is named using the convention ecL-‘listName’.plt.

[5] Contact forces are generated when the two edges penetrate each other. This occurs
when the ‘gap’ becomes negative. To avoid contact forces at time 0, if the initial gap for
a specific contact is negative, an offset value g0 equal to the absolute value of the gap is
applied for the rest of the simulation (obviously to that contact alone)

gap = dst - R1 - R2 + g0 g0 = max(-gap, 0) at time 0

[6] Update intervals are now specified in the ControlParameters section using the
GlobalUpdateTimeInterval command.

16.3.1 Time History Commands

PlotList ‘ListName’ {

. . .

ecL-‘ListName’ NumberOfContacts

ecL-‘ListName’ ActiveContacts

ecL-‘ListName’ MinimumDistance

ecL-‘ListName’ MinimumGap

ecL-‘ListName’ NormalForce

ecL-‘ListName’ X-Force

ecL-‘ListName’ Y-Force

ecL-‘ListName’ Z-Force

}

The difference between ‘MaximumPenetration’ and ‘CurrentMaxPenetration’
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16.4 Face Contact List

The face contact makes it possible to detect contacts between a list of nodes/particles and
a list of triangular faces. For the purpose of contact, a node/particles takes a spherical
shape and a triangular face takes a three dimensional smooth shape consisting of a thick
plate surrouned by semi-cylindrical edges and spherical corners, reminding the shape of
old Vicks cough drops. The spherical surfaces are centered at the three nodes defining the
face. The radius of the edge cylinders and corner-spherical surfaces is half the thickness
of the plate. The thickness of the plate is either provided by the face lists or defined
via input. Contact between a node and a face begins when the exernal surfaces of the
associated 3-D shapes start penetrating each other. It is possible that in some cases, a
node can go through a face. Here are some scenarios:

• Nodes are small, faces are thin and the maximum contact force that can be gener-
ated (Fn,max = K(rnode + tface/2) is not suffient for preventing crossing. Remedy:
increase penalty stiffness.

• The relative velocity of the objects is so large and the time step so coarse, that the
contact algorithm does not have a chance to work. Remedy: reduce time step to
achieve accuracy.

Although it would be possible to insert logic in the code to detect these scenarios, the
computational cost would be considerable. It make more sense for the user to be aware
of these potentatial problems and take corrective actions when they occur.

The input commands for face contact list take the format

NodeFaceContactList ‘Name’ {

// variables with the % sign inherit defaults from control parameters

// 1. Specify lists

NodeList ‘NodeListName’

FaceList ‘FaceListName’

// 2. Enter minimum face thickness if necessary

FaceThickness 0.2 cm // {1} %

// 3. Enter node radius control parameters if necessary

NodeThickness 0.4 cm // {2} %

// if nodes are particles, node thickness is the

larger of thn and node radius

// 5. For contact purposes, nodes cannot be larger

than MaxNodeRadius

[ MaxNodeRadius 0.6 cm ]

// 6. All nodes are assigned a contact radius FixedNodeRadius

independently of their actual radius

[ FixedNodeRadius 0.5 cm ]

// if face list comes from shells, face thickness is

the larger of thf and half shell thickness

// 7. Do not initialize overlap
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[ ActualContactDistance ] {4}

// 8. Define detection distance

DetectionDistance 0.6 cm // %

// 9. Define update interval

UpdateInterval 0.000010 s // %

MinimumDistance 0.1 cm

// 10. Enter contact models, see previous sections

ContactForce PenaltyHyst { . . . }

FrictionForce { . . . }

RollingResistance { . . . }

UpdateInterval 0.000010 s // %

Debug 6

}

[2] The radii of the nodes are controlled by three optional input commands: NodeRadiusNoSmallerThan,
NodeRadiusNoLargerThan, and NodeRadiusExactly. The first command sets a lower
bound rmin for the node radii, the second command sets un upper bound rmax , and the
third command sets both lower and upper bound essentially forcing all nodes to have
that value. These bounds are usedin the calculation to compute the effective contact
radius rc for each particle using this logic

rc = max(rad, r_min)

rc = min(rc, r_max)

[4] The ActualContactDistance command is used in rare occasions when the initial
configuration is pre-stressed and initial contact forces are desired. In this case, the g0

gap offset parameter is never set.

16.4.1 Time History Commands

The following line commands are intended to be used inside Time History lists to produce
records of global list variables.

TimeHistoryList HIST {

. . .

tcL-‘ListName’ NumberOfContacts

tcL-‘ListName’ ActiveContacts

tcL-‘ListName’ MinimumDistance [1]

tcL-‘ListName’ MinimumGap

tcL-‘ListName’ NormalForce

tcL-‘ListName’ X-Force

tcL-‘ListName’ Y-Force

tcL-‘ListName’ Z-Force

}

[1] The MinimumDistance time history is very useful for checking whether any node has
crossed a suface. This is likely to happen if the distance becomes very very close to zero.
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16.4.2 Visualization

For models of moderate size which employ contact lists, it is useful to visualize the
elements that can potentially come into contact at time zero. Such visualization provides
1) a way to check that thicknesses of points, edges, and faces are prescribed correctly,
and 2) a way to assess that the detection distance parameter is adequate.

The visualization methods which were available in interactive examine mode have
been improved and made available also in ‘input file’ mode as new commands. These
new features are available in MARS versions dated April 19, 2010 or later.

The WritePlotFile command is used to generate a Quasar plot file that visualizes
node-face contacts detected at time zero. The plot contains only the faces and nodes
that are used in the contacts using the plot attributes (color and radii) defined in their
respective lists. The file is named using the convention tcL-‘listName’.plt.

16.5 Node-Rebar Contact List

The rebar contact list makes it possible to detect contacts between a list of nodes/particles
and a list of cylindrical beam elements. For the purpose of contact, a node/particles takes
a spherical shape and a beam takes a three dimensional smooth shape already described
in the edge-edge contact section. This type of contact can be used for some specific
applications, such as the interaction of loose particles with rebars.

The input commands for face contact list take the format

NodeRebarContactList ‘ContactListName’ {

// Also ‘NodeBeamContactList’ and ‘NodeEdgeContactList’

// variables with the % sign inherit defaults from control parameters

// 1. Specify lists

NodeList ‘NodeListName’

BeamList ‘BeamListName’ // or

EdgeList ‘EdgeListName’

// 2. Control particle and beam shapes

NodeThickness 0.4 cm // OBSOLETE

NodeRadiusNoSmallerThan 0.2 cm

NodeRadiusNoLargerThan 0.4 cm

NodeRadiusExactly 0.3 cm

BeamThickness 0.2 cm // OBSOLETE

BeamRadiusNoSmallerThan 0.2 cm

BeamRadiusNoLargerThan 0.4 cm

BeamRadiusExactly 0.3 cm

NoHemiSphericalCaps

// 3. Set detection and update parameters

DetectionDistance 0.6 cm // %

UpdateInterval 0.000010 s // %

// 4. Enter contact models, see previous sections

ContactForce PenaltyHyst { . . . }
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FrictionForce { . . . }

RollingResistance { . . . }

Debug 6

}

The radii of the nodes are controlled by three optional input commands: ‘NodeRa-
diusNoSmallerThan’, ‘NodeRadiusNoLargerThan’, and ‘NodeRadiusExactly’. The first
command sets a lower bound rmin for the node radii, the second command sets un upper
bound rmax , and the third command sets both lower and upper bounds to the same value
essentially forcing all nodes to have that value. These bounds are used for computing
the effective contact radius rc of each particle using this logic

rc = max(rad, r_min)

rc = min(rc, r_max)

Default values are rmin = 0, rmax =MBIG (very large number). Obviously, NodeRadiusNoSmallerThan
and NodeRadiusNoLargerThan should not be used when NodeRadiusExactly is used to
avoid prescribing conflicting bounds.

Similarly, the radii of the beam cylinders are controlled by three optional input com-
mands: BeamRadiusNoSmallerThan, BeamRadiusNoLargerThan, and BeamRadiusExactly.
The same logic is applied to compute and effective contact radius for each beam. If the
beam has already a circular shape, the beam list provides a defult radius which is related
to the geometric properties of the cross-section: for solid rebars, it is the actual radius;
for hollow tubes, it is the outside radius, etc.

The command NoHemiSphericalCaps is optional and is used to control the 3D shape
of a beam to be a plain cylinder with no hemispherical surfaces attached at the ends.

16.5.1 Time History Commands

The following line commands are intended to be used inside Time History lists to produce
records of global list variables.

TimeHistoryList ‘ListName’ {

. . .

rcL-‘ContactListName’ NumberOfContacts

rcL-‘ContactListName’ ActiveContacts

rcL-‘ContactListName’ MinimumDistance

rcL-‘ContactListName’ MinimumGap

rcL-‘ContactListName’ NormalForce

rcL-‘ContactListName’ FrictionForce

rcL-‘ContactListName’ InternalWork

rcL-‘ContactListName’ X-Force

rcL-‘ContactListName’ Y-Force

rcL-‘ContactListName’ Z-Force

}
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17 Interference Check

This is a collection of methods designed to detect part overlapping or crossing of a part
through a surface. Their main purpose is to ensure that contact conditions work properly.
These methods do not affect the results of a computation and should be disabled when
the user has gained confidence that there is no unwanted part penetration. penetration.

17.0.2 Node-Hex Overlap Check

This feature is designed to detect whether any node from a list are located inside any
hex element form another list. The main purpose of this is to ensure that the contact
algorithms is able to prevent contacting nodes from penetrating into a solid part.

Checks {

NodeHexOverlapCheck NHOC {

NodeList NODS

HexList HEXS

CheckTimeInterval 0.1 ms

[ Disable ]

}

}

Make the CheckTimeInterval smaller than the time step to perform the check at every
check, although this frequency is most likely execessive.

17.0.3 Node-Tet Overlap Check

This feature is designed to detect whether any node from a list are located inside any
tet element form another list. The main purpose of this is to ensure that the contact
algorithms is able to prevent contacting nodes from penetrating into a solid part.

Checks {

NodeTetOverlapCheck NTOC {

NodeList NODS

TetList TETS

CheckTimeInterval 0.1 ms

[ Disable ]

}

}

Make the CheckTimeInterval smaller than the time step to perform the check at every
check, although this frequency is most likely execessive.
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17.0.4 Node-Hex Overlap Check

This feature is designed to detect whether any node from a list crosses any face from a
triangular list. The main purpose of this is to ensure that the contact algorithms is able
to prevent contacting nodes from crossing through a plate or shell part.

Checks {

NodeFaceCrossingCheck ‘CheckName’ {

NodeList ‘ListName’

TrianFaceList ‘ListName’

FaceContactList ‘ListName’

CheckTimeInterval 0.1 ms

[ Disable ]

}

}

Make the CheckTimeInterval smaller than the time step to perform the check at every
check, although this frequency is most likely execessive.

18 Pre- and Post-Processing

18.1 Plot Lists

The input section for plot lists is typically located at the end of the input stream, before
the MPI section and at the same level of the time history sections. Multiple plot lists can
be defined. Each plot lists generates a sequence of plot files at specified time intervals.
Currently, two plot formats are available: Quasar and Paraview. There are two ways for
selecting plot format. The first way is to specify it inside the PlotList section:

PlotList ‘listName’ Paraview {

. . .

}

// or

PlotList ‘listName’ Quasar {

. . .

}

If either keyword is omitted, MARS automatically assumes the plot format is Quasar.
Since July 17, 2011, a second way of specifying plot format is available:

PlotList ‘listName’ Paraview {

. . .

}

// or

PlotList ‘listName’ Quasar {

. . .

}
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The typical plot list input features control commands and list specific commands. The
first group includes four commands:

PlotList ‘listName’ ‘plotType’ {

TimeInterval 0.1 ms // also dt 0.1 ms [1]

DeleteAllFiles // in this family ( PLOT.* ) [2]

Counter 44 // reset file name counter to 44 [3]

NextTime 0.344 ms // reset next plot write time [3]

. . .

}

[1] The TimeInterval command is used to specify the time interval used for cre-
ating the family of plot files. Since Jul 17, 2011, this command may be omitted and
a default TimeInterval can be specified in the PlottingDefault subsection of the
ControlParameters section. For Quasar files, different plot lists can use different time
intervals. For Paraview files, graphical components are saved in different plot lists; as
such, the time interval must be the same and the default time interval command is a
better way for specifying the time interval.

[2] The DeleteAllFiles command is used to remove all plot files previuosly gen-
erated. For Quasar plot lists, Mars executes the command rm ‘listName’.???. For
Paraview plot lists, Mars executes the system commands rm ‘listName’.*.vtu and rm

‘listName.*.pvd.
[3] These two commands, Counter and NextTime, are rarely used. They may be

useful in restart operations.
The rest of the input specifies the list[s] to be plotted and specific plotting attributes.

More details are available for each of the plottable lists in their sections. Below are some
examples.

PlotList ‘listName’ Quasar {

. . .

All // plot all plottable lists

}

PlotList ‘listName’ ‘plotType’ {

. . .

hxL-WALL {

CountourPlot StateVariable 1

}

}

18.1.1 Parallel processing with Paraview

The MARS plot generating procedures for Quasar and Paraview are very different.
Quasar expects a single input file; as such, the contributions to each list from the various
processes must be combined in MARS. Paraview can read and combine files generated
from different processes. This eliminates the need to combine large data sets in rank zero
process, which could lead to memory requirement problems. The Paraview files have the
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following name convention ‘plotListName’.nnn.ppp.vtu, where nnn is an integer rep-
reseting the sequential time frame and ppp is a three-digit integer representing the rank
of the process that generated the file. In addition to these files, there is an additional
file name ‘plotListName’.pvd that contains direction for Paraview on how to load and
combine the previous files. This is one of the files that shows up in the Paraview Open
window, and it is the one that should be selected.

18.1.2 Changing time interval during simulation

It is possible to change the plot time interval during the simulation. For example, let’s
assume that we want plot frames every 0.01 ms for the first millisecond of the simulation,
and then every 0.1 ms for the rest of the simulation. This can be accomplished using
the procedure below. File ChangeDR.mrs is a separate file that must be created in the
problem folder. MARS will read this file at time 1. ms as instructed by the command in
the ControlParameters section.

ControlParameters {

. . .

ReadFile ChangeDT.mrs atTime 1. ms

}

. . .

PlotList PL01 Paraview {

TimeInterval 0.01 ms

. . .

}

Listing of file ChangeDT.mrs

Change file

PlotList PL01 Paraview {

TimeInterval 0.1 ms

}

EOF

18.2 Time History Lists

The input section for time history requests is typically located at the end of the input
deck after all components of the model have been defined and initialized. The name of
the time history list is used to create the name of the output file by appending ’.th’. The
input commands to the TimeHistoryList consist of the output time interval and a set of
variables, one variable per line. The format for each variable is standardized, and obeys
the following convention convention

v [de ‘Description’] [S scl] [O ofs] [D]
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where ob is the two-character tag for a list (this is found in the examples at the list level
in the pages for the different lists), NAME is the name of the list. The first line of the
three lines above refers to variables for the whole model, such as total kinetic energy, a
list of available variables is given below. If the variable involves the whole list, use the
obL format; if the variable involves an object of the list, use the ob format and select the
object o using one of the following methods:

1. enter the index of the object, e.g. nd-NODS 45

2. find object closer to a point in space, e.g. nd-NODS cl 5. 7. 3.

In the commands above, v is used to select the variable within the list or object. Optional
entries are the description, which will be displayed in plots and used for variable selection,
the scale scl and offset ofs. Scale and offset are used to modify the output value according
to the following expression

Voutput = scl * (Vcalc + ofs)

The D character automatically sets the offset to the opposite of the initial value of the
variable. This is useful when plotting displacements in a Cartesian direction since the
displacement is equal to the difference between current coordinate and initial coordinate:

nd-NODS 12 cx D = displacement of node 12 in x-direction.

The variables available for each list and the keyword to specify them, are described
in the various list pages under a section called ‘Time Histories’ Histories’

HistoryList HIST {

TimeInterval 0.1 ms // also dt 0.1 ms

SkipFirstRecord // use this when values at time 0 look wrong

// enter a list of scalar quantites

// Global quantities

tmx // X-Translational momentum

tmy // Y-Translational momentum

tmz // Z-Translational momentum

rmx // X-Rotational momentum

rmy // Y-Rotational momentum

rmz // Z-Rotational momentum

ke // Kinetic energy

ie // Internal energy

iw // Internal work

ew // External work

eb // Energy balance

kex // Kin Energy vx

key // Kin Energy vy

kez // Kin Energy vz
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TimeStep // {1}

CpuTimePerStep // {2}

CumulativeCpuTime // {3}

// List type quantities

ndL-Nodes variable [ options ]

// Element type quantities

nd-Nodes index variable [ options ]

// In the two exemples above nd means NodeList

// For specific list formats, check in the history section of the list help

// The following options are available to all lists

S s : scale output by s

O o : offset output by o

combined: output = s * (value + o)

default: s = 1. o = 0.

D: take difference between current and initial values

U length in : convert a length variable into inches

Node: U modifies the scaling factor s by multiplying

current scaling factor to conversion factor

F %6.3f : uses a specific format (C convention)

%6.3f = 6 fields with 3 decimal digits

%10.3E = exponential notation, 3 decimals

de "Description" : change description

}

[1] The time history of the time step provides useful information regarding the evolution
of the stable time step during a simulation. This can help when in time certain problem
may occur.

[2] The time history of the CPU time per step samples the time it takes per cycle
at the print intervals. The CPU time per step is typically constant, except for the step
when plots are generated or contact conditions are updated. Some spikes in the curve are
to be expected. For MPI performance evaluations, one should use the prevalent value.

[3] The time history of the cumulative CPU time tells how much CPU time has elapsed
from the beginning of the execution. It is useful to detect if a considerable amount of
time is spent in performing special tasks. For example, if the detection distance in a
contact list was set very large, the time required to update the contacts may show up as
a visible step in the time history curve.

19 MPI Parallel Processing

The MPI parallelization of MARS is work in progress that begun in the spring of 2009.
The MPI approach adopted in MARS takes advantage of the object oriented architecture
of MARS itself.

Before the advent of multi-core processors, the term CPU was used to identify and
count individual processor units in a computer system. This term can still be used
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to describe a physical object that sits in your machine, but when discussing resource
allocation for parallel computing the words ”CPU” and ”processor” are ambiguous, and
are therefore best avoided.

For instance, documentations of cluster resource allocation schemes typically make
reference to ”processors” as meaning essentially a core (as in ”each node has two sockets
and each chip has two cores, which means that each node has four equivalent processors”).
It would then be very confusing to say that this cluster has two dual-core processors on
each node!

Instead, we have a hierarchy of three levels that we deal with: cores, sockets, and
nodes.

Node..: also called ”host”, ”computer”, ”machine”. For our purposes, the most
important definitions of a node is that a certain amount of memory (RAM) is physically
allocated on each node. Nodes are typically separated by network connections, and each
node has a unique network address (host name/IP number). Each node contains one or
more sockets; the node is then labeled e.g. a ”two-socket” or ”four-socket” node.

Socket: refers to collection of cores with a direct pipe to memory. Note that this does
not necessarily refer to a physical socket chip, but rather to the memory architecture
of the machine, which will depend on the chip vendor specifications. Usually, however,
the sockets resemble the old definition of a CPU (or single-core processor). Each socket
contains one or more cores; the socket is then labeled e.g. a ”dual-core” or ”quad-core”
socket. Each socket has its own L2 cache chip, which typically is shared among its cores.

Core..: refers to a single processing unit capable of performing computations. A core
is the smallest unit of resource allocation. Each core has its own L1 cache chip.

There are two main reasons for distributing the computation over several processors:

1. for handling large models which require extensive memory to run in core,

2. for reducing execution time.

In the first case, we need to distribute our computational model over a sufficient number
of nodes so that each node can accomodated the memory requirements for its portion
of the calculations. In the second case, we want to take advantage of the simultaneous
solutions of different parts of the model, which reduces global execution time. time.

In MPI executions, the user requests access to a certain number of nodes, which
are allocated by the system when they become available. The computational model is
partitioned into as many parts as the number of cores available. This operation is called
‘domain decomposition’. The objective of ‘domain decomposition’ is to split the model
in regions. Each of these regions is assigned to an individual core, which takes control
of the objects (finite elements, contacs, etc.) located in that region. In the currenct
scheme, every core has complete exposure to the entire geometry of the model. This
is accomplished by using the inheritance properties of OOP. For example, an LDPM
element which is one of the most memory intensive and computationally demanding
element, requires almost 6 kilobytes of memory per tet element. However, the geometry
of a tetrahedral is defined by 4 nodes which require either 16 or 32 bytes depending
whether we use 4-byte integers of 8-byte addresses for identifing the nodes. During the

215



reading phase, each processor reads and stores all tetrahedral elements in ‘TetSolidList’.
During the initialization phase, each processor converts the tet elements under its control
from geometrical elements to LDPM elements. Other lists may employ different schemes.
For example, contacts and constains are detected inside each domain; thus, each core
controls exclusively a number of contacts/constraints without knowing that the other
cores are doing.

19.1 Decomposition Schemes

Past versions of MARS were supporting three schemes for performing domain decompo-
sition:

1. Orthogonal Recursive Bisection (ORB)

2. Octree

3. METIS libraries

Currently, we are only supporting the ORB method because it is capable of distributing
all work efficiently.

19.1.1 Orthogonal Recursive Bisection

The orthogonal recursive bisection method surrounds the domain by a parallelepipedal
box. The box is first divided in the longest direction in two smaller boxes each containing
the same number of objects. Each of the two boxes are split into two smaller boxes and
so forth, until the desired number of boxes (domains) is generated. Some figure and a
more extensive explanation are given at these two web sites:

http://www.netlib.org/utk/lsi/pcwLSI/text/node253.html

http://ww2.cs.mu.oz.au/498/notes/node52.html

The input for specifying the parameters for performing a ORB domain decomposition
have been greatly siplified making it much easier to understand. The only command
is RecursiveBisection followed by the name of the list whose objects are used in the
domain decomposition.

MpiDomainList {

RecursiveBisection ttL-‘ListName’

}

In some circustances, it is preferable to perform the bisection perpendicular to a fixed
direction (x-, y- or z-axis). This is accomplished using the following command:

MpiDomainList {

RecursiveBisection ttL-‘ListName’ X-direction // or Y-direction, etc

}
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In the next paragraphs, we will explain in detail how this parallelization scheme is im-
plemented in MARS. The list selected by the user with the List keyword is used for
the domain decomposition. As such, the user should select the most computationally
expensive list in the model. In this case, computational cost is defined as the number of
elements in the list times the computational cost of each element. The center points of
the elements are then used to drive the ORB process and split the domain in a set of
subdomains. Since the number of subdomains doubles at each step, the total number of
subdomains is a power of two. For this reason, the number of core requested for an MPI
run should also be a power of two number. If a different number of cores is requested,
MARS will error off with a message. The ORB is extremely fast and a large number of
points, in the order of millions, can be split in multiple subdomains in less than a second
on most current processors.

Once the domain decomposition has been completed, the whole three-dimensional
space is subdivided in finite or semi-infinite parallelepipedal regions. Each region is
assigned to a single core. Thus, the number of regions has to be equal to the number of
cores been requested. Although it is possible to specify FirstNode and NodeSpan, these
features are temporarily disabled and MARS will perform the domain decomposition
based on the number of cores available.

The domain decomposition is used to assign the objects of most lists to the cores.
Some lists, like PlotLists and TimeHistoryLists are excluded from this process.

19.2 Treating lists

In this section, we discuss the MPI strategy for treating different lists. Basically, there
are three types of lists:

• Lists type L1: currently, only NodeList belongs to this type. Each rank containts
the full description of all objects in these lists. An object in one of these lists can
only be ‘owned’ by a single rank, but can be ‘shared’ by multiple ranks. An object
is shared by a non-owner rank, when it is used in the definition of other objects
that are owned by that rank. For example, rank 7 owns a tetrahedral element; two
of the four nodes used to the define the element are also owned by rank 7, but the
other two nodes are owned by a different rank. The latter two nodes are marked
as shared by rank 7.

• Lists type L2: most of finite element lists belong to this type. Each rank contains
a full description of the objects it owns, and a reduced geometric description of
all the other objects it does not own. This makes it possible to perform certain
operations, like contact detection, by all ranks at any time.

• Lists type L3: variable lenght lists, like contact condition lists, belong to this tpye.
Typically, the objects in these lists are created during the initialization phase.
During the initialization phase, the objects are created only in the rank that controls
the domain where the objects are located.
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19.3 MPI Logic

This section explains the logic currently implemented for synchronizing the message
passing between the processes. With reference to the ‘solver loop’ previously discussed,
the operations for synchronising nodal information at the inter-domain boundaries are
performed within the integrateEOM method.

while (time < terminationTime) {

. . .

for (jL = 0; jL < numLists; jL++)

list[jL]->calcFrc();

for (jL = (numList-1); jL > -1; jL--)

list[jL]->reduceFrc();

for (jL = 0; jL < numLists; jL++)

list[jL]->integrateEOM();

// apply kinematic conditions for master-slave formulations

for (jL = 0; jL < numLists; jL++)

list[jL]->applyKin();

. . .

}

The treatment of the boundary nodes is explained with this example. Assume you have
a finite element Q owned by the rank 1 process. Two of its nodes, 6 and 9, are also
owned by rank 1 while nodes 7 and 8 are owned by rank 2. The internal forces for Q

are computed in the calcFrc() method. The force contributions at node 7 and 8 are
passed to rank 2 via an MPI message at the beginning of the integrateEOM)() method.
These contributions are added to the existing forces. The equations of motion are then
integrated. Finally, the updated coordinates and velocities for nodes 7 and 8 are passed
back to rank 1, that will use them for the next time step.

Rank 1 | Rank 2

6--------7

| Q | |

| | |

9--------8

This logic works very well for all types of list that compute internal forces, including
contact conditions, penalty-force based constraints, etc.

The current logic is not able to handle master-slave constraints. This is explained
with the following example. Let’s consider a rebar embedded in a solid tetrahedral LDPM
mesh. Let B be a beam element for the rebar that spans two domains, one owned by the
rank 1 process and the other owned by the rank 2 process, as shown schematically below:

Rank 1 | Rank 2

--8----B---9--

|
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Beam B is owned by rank 1, its nodes, 8 and 9, are owned by rank 1 and rank 2 respec-
tively. The internal forces computed for beam B at node 9 in the calcFrc() method
must eventually be transferred to rank 2 that ownes node 9. Currently this is done in the
integrateEOM() method. Assume that the beam nodes are embedded in a tetrahedral
mesh using master-slave constraints. The force reduction where forces at beam nodes
are distributed to tet nodes is done in the reduceFrc() method which is placed between
the calcFrc() and integrateEOM() methods. With the current logic, node 9 has not
yet received the force contribution from beam B.

Similar problems may occur when synchronizing the velocities. For this scenario,
let’s assume that the constraint that ties node 9 and a tet elements is owned by the rank
1 process. The information for the tet nodes is synchronized in the integrateEOM().
Thus, the velocities at the beam nodes are computed correctly. However, the velocities
for node 9 computed by rank 1 in the applyKin() method are not shared with the other
processes. Indeed, after the applyKin() task, rank 1 should communicate the velocities
of node 9 to rank 2 that is the owner of node 9 and rank 2 should communicate the same
info to all other ranks that use node 9.

We are currently evaluating different strategies for including master-slave constraints
in the overall MPI framework. Obviously, one of the requirements for any strategy is the
minimization of the number of inter-process mpi messages.

19.4 Visualization

It is possible to visualize the domain decomposition for some lists. Currently this option
is available for 1) node lists, and 2) tet lists. Details are given in the plot help sections
of these lists.

PlotList DomainDecomposition {

Paraview

TimeInterval 100. s

ttL Tile {

DomainDecomposition 1.3

}

}

19.5 Examples

19.5.1 Brazilian Test

The top and bottom plates and all contacts of plates with specimen are handled by rank
0. The rest of the model is split among all other processors using the ORB method.Slaves
nodes in contact are also assigned to rank 0. 0.

MpiDomainList {

RecursiveBisection ttL-Specimen

PrintDetails

}
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19.5.2 Contact between projectile and concrete slab

LDPM elements are decomposed using ORB. The projectile which is relatively inexpen-
sive is assigned to the rank 0 process. Fiber and conrcrete-fiber interaction constraints
are distributed using the DD2 decomposition.

MpiDomainList {

RecursiveBisection ttL-Specimen

}

19.5.3 Contact between particles and nanoindenter

Particles are divided using recursive bisection method. Nanointenter is handled by all
nodes. Contact between particles and nanoindenter are handled by RB. Contact between
particles are handled by RB

MpiDomainList {

SingleNode DD1 { Node 0 }

Bisect DD2 { FirstNode 0 List ndL-Particles Verbose }

AllNodes DD3

Default DD1

npL-PrtInteraction DD2 U

nd-Particles DD2 U

ndL-NanInd DD3 C

tcL-PrtIndContacts DD2 U

Update {

TimeInterval 0.1 ms

[ dd-DD2 ]

nd-Particles

nc-*

tc-*

}

}

20 Generation of Complex Parts

21 How to Perform Specific Tasks

This is a collection of instructions that describe procedures for performing various taks.

21.1 monitor energy

In most dynamic simulation, it is useful to monitor the transfer of energy across the
system. Most important, it is essential to ensure that there is no artificial energy entering
into the system due to numerical instabilites or just errors in the algorithms. The best
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way to accomplish this control in MARS is to generate time histories of work and energy
for global and list variables. At the global level, four quantities are available:

TimeHistoryList ’ListName’ {

. . .

ExternalWork

InternalWork

KineticEnergy

EnergyBalance

}

’ExternalWork’ (We) is the work performed by external forces, or pressures, or reactions
at nodes where the motion is prescribed. Positive external work means that the nodes
move in the directions of the forces and energy is entering into the system.

’InternalWork’ (Wi) is the work performed by internal stresses as a body is deforming.
If the strains operate in the direction of the stresses (for example, tensile strain increments
are applied to a body already in tension), then the internal work is positive. For nonlinear
materials, internal work will result in recoverable elastic energy and dissipated energy (e.g.
due to plastic work). An internal work quantity is computed for each list that consists of
entities with internal forces (finite elements, contact elements, bonding elements, etc.).
The computation of the internal work is done just before the node force increments are
added to the total nodal force variable.

Wi+ =
∑
FIj(ti)VIj(ti − dt/2)dt

where FIj are the force increments and VIj are the corresponding velocities. Note
that the velocities are half a step off from the forces; this may result in small errors.

’KineticEnergy’ (Ek) is the energy associated to the motion of the parts and is the
summation of of

Ek = 1/2
∑
miv

2
i

where mi and vi are the masses and velocities of the nodes. The kinetic energy is
always positive.

’EnergyBalance’ Eb is defined as
Eb = Wi +Ke +We

The energy balance should remain constant during a calculation. If a system starts in
its unstressed state but with moving parts, the intitial energy balance is the total kinetic
energy of the moving parts at the beginning of the simulation.

It is possible to print a global table of external, internal, and kinetic energy per list
like the one shown below when MARS is interactive mode, by typing ’M’ and ’w’ at the
prompt:

mdl> M

n: number of elements

m: mpi decompositions

w: work balance

x: node lists

t: min time steps
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> w

List | ExtWrk | IntWrk | KinEnr

--------------------------------------------

nd-PRTC | | | 0.119

tt-PRTC | | -0.736 |

nd-EFEP | | | 0.006

hx-EFEP | | -0.083 |

nd-EFEN | | | 0.006

hx-EFEN | | -0.076 |

nd-LOAP | | | 0.059

hx-LOAP | | -0.013 |

pv-VEL1 | 1.098 | |

tb-BND1 | | 0.000 |

tb-BND2 | | 0.000 |

--------------------------------------------

Totals | 1.098 | -0.908 | 0.190

Balance = EW + IW - KE = -0.0004125

Work and energy values are times e-1 J

Example. This example, consisting of a spring ’SSSSS’ fixed at the left and with a mass
’M’ attached at the right (see schematic below), is intended to illustrate the concepts
above in a simple framework.

|-SSSSSS-M <- F

A constant force ’F’ is applied at time t = 0. The closed form solution to this problem
is is

x(t) = A (1 - cos wt)

v(t) = V sin wt

where w = sqrt(M/K) is the frequency, K is the stiffness of the spring, x(t) is the coor-
dinate of the mass (x(t=0)=0.), A=F/K is the amplitude of the oscillations, v(t) is the
velocity of the mass, V=A/w is the amplitude of the velocity. Thespring internal force
Fi is computed as

Fi(t) = Kx(i) = AK(1− cos(ωt) = F (1− cos(ωt)
The external work We, internal work Wi, and kinetic energy become become

We(t) = F x(t) = F x(t) = F A (1 - cos wt)

= F^2/K (1 - cos wt)

Wi(t) = integral [ Fi(t) v(t) dt ]

= 0.5 K x(t)^2 =

= 0.5 K A^2 (1 - cos wt)^2

= 0.5 F^2/K (1 - 2 cos wt + cos^2 wt)

= 0.5 F^2/K (-1 + cos^2 wt) + F^2/K (1 - cos wt)

= - 0.5 F^2/K sin^2 wt + F^2/K (1 - cos wt)
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Ke(t) = 0.5 M v(t)^2 = 0.5 M V^2 sin^2 wt

= 0.5 F^2/K sin^2 wt

since

M V^2 = M A^2 / w^2 = M (F/K)^2 / (M/K) = F^2/K

Note that the external work is equal to the sum of internal work (in this case it is all in
the form of elastic energy) and kinetic energy

We(t) = Wi(t) +Ke(t)
The energy balance Eb = Ke+Wi-We remains constant at 0.

21.2 save plot data for later post-processing

While MARS makes it possible to generate pre-determined plotting data through PlotLists
during a simulation, you may find it necessary to change some of the plotting parameters
once the results of a simulation are known. Rerunning a lengthy simulation with different
plotting parameters is not only inconvenient but wasteful and time consuming. For this
reason, in 2008, we introduced the capability of writing plot data at regular intervals
during the simulation and reading the data back for generation of plot files viewable with
Quasar or other 3-D viewers. This feature is not 100

Mars Input File

ControlParameters {

. . .

WritePlotDataFile data.plt Every 0.1 ms

}

. . .

In the command above, plottable data is written to file ’data.plt’. You can change this
name to any name you want.

Postprocessing the data is also simple. The idea is to use the same input file used in
the simulation for initializing the MARS model database. However, instead of running
a simulation, MARS reads the data frames from the plot data file at the intervals at
which they were saved and generates the 3-D plot files as specified in the PlotLists. You
may modify the input file for generating new plot lists or change plotting parameters in
existing ones. The command for instructing MARS to read data from the input file is
ProcessPlotDataFile and is inserted at the very end of the input file

Mars Input File

ControlParameters {

}

. . .

PlotList Plot1 {

// update any parameter

}

// insert new PlotLists

PlotList Plot2 {
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}

ProcessPlotDataFile data.plt

EOF

Updates

11-24-09: works for MPI runs

21.3 write and read restart files

Restart files fulfill two useful functions:

1. they make it possible to restart a job that was terminated for a variety of reasons.

2. they make it possible to interactively post-process the data in a different computer.

There are three ways to direct MARS on when to create restart files:

1. in the input file,

2. when an execution is interactive mode,

3. via external command file.

In the input file, file-restart commands are written inside the ControlParameters block.
Three forms are available as shown in the example below. More than one line can be
entered.

ControlParameters {

. . .

WriteRestartFile AtTime 10. ms

WriteRestartFile AtStep 10000

WriteRestartFile Every 0.1 ms

}

If you are running MARS in interactive mode, MARS goes interactive at the beginning
and end of an execution. When in interactive mode, enter the character D at the prompt
to generate a restart file. It is also possible to force a restart-file write during a batch
execution. To do so, change to the working directory where input and output files reside.

cd work-dir

and enter the following at the prompt

echo D > stop
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At every step, MARS check if file stop is present. It this file is present, MARS reads
its contents. The character D in stop forces MARS to write a one-time restart file; after
that, MARS deletes file stop so that it is not present at the next time step.

MARS restart file names have the following format: ’problemName’.rst.xxxxxx

where ’problemName’ is the original filenme without .mrs extension and xxxxxx is a
6-digit number which represents the time in the simulation when the file was created.
Typically, the time is given in micro-seconds. For example, testA15.rst.001456 was
created when the simulation with input testA15.mrs had reached a time of 1.456 milli-
seconds. The time in micro-seconds works for most simulations. However, in some cases,
the time scale is much shorter or longer. For simulations at the nano-scale (simula-
tions that employ the Nano unit system), the time is expressed in pico-seconds. For
simulations that exceed a second, the number of digits may increase. For example,
’problemName’.rst.2000000 represents a restart file written at 2 seconds.

Restarting an execution is relatively simple. At the prompt type

> mars ’problemName’.rst.000450

MARS will recognize the restart file, load the data-base and go in interactive mode.
In a batch file, enter the command

mars -B ’problemName’.rst.000450 > output.dat

Restart files are portable across computer systems. They are written in binary format.
MARS automatically detects whether they are written in little-endian format and con-
verts them if necessary.

It is possible to make changes to the database, including adding new components to
the model. In this case, the syntax is

mars modification.mrs -R ’problemName’.rst.000450

where file modification.mrs follows the rules of conventional MARS input files. An
example will be provided in the future.

21.4 pre-process input files

Since Dec-2009, MARS supports the capability of preprocessing input files using the
same syntax employed for C and C++ source code. A useful overall description of the
C preprocessor can be found at at

http://en.wikipedia.org/wiki/C preprocessor
Gnu.org provides a more comprehensive description of all capabilities of the prepro-

cessor at at

http://gcc.gnu.org/onlinedocs/cpp/index.html\#Top
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Of interest are the sections regarding conditional compilations. compilations.
The idea is to incorporate pre-processing directives in a MARS input file and use the

preprocessing capabilites of the C compiler available on different platforms to generate the
actual input file to be used as input to MARS. While the sites above provide a complete
overview of the preprocessor capabilities, the examples below give a more tangible feel for
how these capabilites can be used in the context of writing MARS input files. Note that
files with pre-processing directives cannot be input directly to MARS. For this reason,
they use the .pmi extension, where pmi stands for pre-processed Mars input. input.

The first example shows how to manage two executions with a single input file. The
first execution performs the actual simulation and saves ’plot snapshots’ at regular time
interval of DT milliseconds. The second execution post-processes the plot data file gen-
erated in the first execution and generates a sequence of Paraview plot files. In addition,
we want to be able to change the time interval at which plot snapshots and Paraview
plot files are generated. The composite input file (input.pmi) looks like this: this:

Title line

ControlParameters {

. . .

WritePlotDataFile data.plt Every DT ms

}

#ifdef PLT

PlotList Cells {

Paraview

TimeInterval DT s

ttL-Tile { Cells }

}

ProcessPlotData data.plt

#endif

EOF

where the preprocessing directives are the lines which begin with a ’#’ character. The
Mars command line for performing the simulation is

mars -B -DDT=0.001 input.mpi

The resulting input file (input.mrs) will look like this this

Title line

ControlParameters {

. . .

WritePlotDataFile data.plt Every 0.001 ms

}

. . .

EOF

Note that the string DT in the input file is replaced by the definition given in the command
line by -DDT. The switch -D indicates that what follows, in this case DT, is a macro with
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an assigned value of 0.001. If no value is assigned to the macro, then, the preprocessor
automatically assigns a value of 0.

Also note that line number used for input errors refers to file input.mrs and not
input.pmi.

The Mars input command for performing post-processing is:
mars -B -DDT=0.001 -DPLT input.mpi

The resulting input file (input.mrs) will look like this this

Title line

ControlParameters {

. . .

WritePlotDataFile data.plt Every 0.001 ms

}

. . .

PlotList Cells {

Paraview

TimeInterval 0.001 s

ttL-Tile { Cells }

}

ProcessPlotData data.plt

EOF

In the examples above, the time interval parameter DT could have been defined inside
the file input.mrs using the #define directive directive

This is the title

#define DT 0.001

ControlParameters {

. . .

WritePlotDataFile data.plt Every DT ms

}

#ifdef PLT

PlotList Cells {

Paraview

TimeInterval DT s

ttL-Tile { Cells }

}

ProcessPlotData data.plt

#endif

EOF

The second example is more complex but shows the potential benefits of using pre-
processing directives. Let’s assume you have a complex model and want to perform a
parametric study of a projectile impacting a structure at different speeds. Some of the
problem parameters would change depending on the projectile speed. For example, for
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faster speed you may want to perform contact updates more frequently as well as plot
dumps, while reducing the overall simulation time. This would require the creation of
multiple input files for each speed case. Furthermore, if the model needs to be modified,
the modifications have to be applied to all files. This is a case where the conditional
capabilities of the preprocessor come handy. Look at the input file below below

Title line

#if V0 == 100

#define TEND 2.

#define DT 0.02

#elif V0 == 200

#define TEND 1.

#define DT 0.01

#else

#error "Velocity not accepted"

#endif

ControlParameters {

. . .

TerminationTime TEND ms

WritePlotDataFile data.plt Every DT ms

}

. . .

NodeList {

. . .

Set Z-Velocity V0 m/s

}

#ifdef PLT

PlotList Cells {

Paraview

TimeInterval DT s

ttL-Tile { Cells }

}

ProcessPlotData data.plt

#endif

EOF

The mars line commands for the two speed cases are respectively
mars -B -DV0=100 input.mpi

or
mars -B -DV0=200 input.mpi

21.5 import Ingrid meshes

The INGRID program can be used to generate finite element meshes of the complete
model or parts of the model. Very often it is preferable to mesh individual components

228



separately and combine them later in the MARS input file. In these cases, the interaction
between components, such as bonding or contact, can be defined very conveniently in the
MARS input. INGRID generates an output file named ingrido, unless the user selects a
different filename. MARS can read the ingrido file and convert its data to MARS format.
This can be done in two ways.

The first method is the most recent and probably the most convenient because all
steps are documented in input files.
• generate an input file that reads ingrido and saves the mesh into a MARS mesh file,

for example

Ingrid conversion input

//-------------------------------

ControlParameters {

Units English

}

//-------------------------------

Read Dyna3dInputFile ingrido

//-------------------------------

NodeList NODS {

Rename BLLT

}

//-------------------------------

HexSolidList H000 {

Rename BLLT

Write PartMeshDataFile bullet.mrs

}

• the mesh can be easily imported into a MARS input file using the commands

HexSolidList BLLT {

Material STEL

Read bullet.mrs

}

The second method is more interactive but requires repetitive work each time a change
in the mesh is necessary.

run mars++ -D ingrido

At the interactive prompt you can examine the INGRID generated model as if it were a
MARS model

When you are ready to write out the model in MARS format, return to the main
level ( -mdl- prompt) and type the W character

Select the mars output and this will generate a file name mars.out which contains the
ingrido data converted to MARS format.
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The mars.out file should be renamed to something more descriptive and should be
edited so that the names of the lists are meaningful and unique.

Note. INGRID should be used mostly as a mesh generator. Some of the features
in INGRID are not translated into MARS. For example, contact conditions specified in
INGRID are not translated because MARS deals with contact at the list level (nodes
from list A contacting faces from list B) and not at the object level (nodes, faces). Here
is a partial list (to be complete) of features that are supported:

- node boundary conditions,
- solid elements
- shell elements
- beam elements
- load curves
- pressure faces
The aspect ratio of Ingrid meshes can be improved by moving the internal nodes.

The example in Figure a) at the website page

http://www.es3inc.com/mechanics/MARS/Online/HowTo.htm#_How_to_convert

shows the mesh of a bullet generated using Ingrid. Note that the aspect ratio of some
element (2 elements deep from the surface) can be improved by slightly moving the nodes.
This is done in MARS by using the Smooth command after the mesh has been imported
and before it is saved. The improved mesh after a series of 6 smooth commands is shown
in Figure b).

HexSolidList H000 {

Rename BLLT

Smooth

Smooth

. . .

Write PartMeshDataFile bullet.mrs

}

In the smoothing operations above, the displacements of the surface nodes are constrained
to ensure that the external shape does not change. Thi is done by using nodal boundary
conditions. The Ingrid input for the model above is listed below. Note how boundary
conditions are used to fix the external nodes. Nodes at the bottom face are free to move
in the bottom plane. Nodes on the plane of symmetry are free to move within the plane
of symmetry. The boundary conditions need to be modified for the actual simulation.

Bullet

dn3d

mat 1 3

ro 0.00025 e 10e6 pr 0.3

endmat

start

1 3 5 ; 1 3 5 7 9 ; 1 7 9 11 ;
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-1. -1. 0.

-1. -1. 0. 1. 1.

0. 5. 6. 6.

di 1 2 ; 1 2 0 4 5 ; ;

di 1 2 ; ; 3 4 ;

di ; 1 2 0 4 5 ; 3 4 ;

sfi ; -1 -5 ; 1 2 ; cy 0. 0. 0. 0. 0. 1. 2.

sfi -1 ; ; 1 2 ; cy 0. 0. 0. 0. 0. 1. 2.

sfi -1 ; ; 2 3 ; sp 0. 0. 5. 2.

sfi ; -1 -5 ; 2 3 ; sp 0. 0. 5. 2.

sfi ; ; -4 ; sp 0. 0. 5. 2.

b 0 0 1 0 0 1 001000

b 3 0 0 3 0 0 100000

b 0 0 4 0 0 4 111000

b 1 1 0 1 5 0 111000

b 1 1 0 3 1 0 111000

b 1 5 0 3 5 0 111000

end

end

t 0.1

cont

21.6 add and remove list during a simulation

During the course of a simulation, it may be required to add or remove lists. For example,
we may need to prestress a structure and then add a dynamic load when the structure has
reached a state of quasi-equilibrium under the static loads. Or we may want to remove
a component that is no longer necessary in the simulation and continue the calculations
for the component of interest. This is possible using this approach. We can use the Read

command inside the ControlParameter section to schedule reading of an input file at a
certain time (see section ... in this manual). Inside this file, we can insert the commands.

ControlParameters {

. . .

Read removeBullet.mrs atTime 0.2 ms

}

The listing of file removeBullet.mrs may look like this

File removeBullet.mrs

Lists {

Remove HexSolidList Bullet

Remove NodeList Bullet

Remove NodeNodeContactList BulletTile

}

EOF
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The list type (e.g. HexSolidList) employ the same keywords that were used to create
the list. Be carefull to remove all lists that reference directly or indirectly on the lists
removed.

21.7 create custom versions of mars

Since Jan 2011, MARS supports the capability of creating custom versions of the code
which incorporate user defined lists and/or user defined material models. In May 2011,
we added two methods for supporting restart procedures. A user can write his/her own
classes in a single file, for convenience we will name it user.cpp. Some examples are
provided. Some knowledge of the C++ language is required.

The user interface is very flexible and makes it possible to define multiple lists and
multiple materials simultaneously. The interface consists of two methods:

obLst *Model::createUserDefinedList (string, Reader *);

obLst *Model::readRstUserDefinedList (RstReader *, string);

Obj *Model::createUserDefinedObject (string, Reader *);

Obj *Model::readRstUserDefinedObject (RstReader *, string);

The functionality of the user defined lists and objects is achieved through the polymor-
phic properties inherited from the parent classes. This will be explained better in future
versions of the manual

The basic user.cpp file with no definitions is listed below:

#include "mars.h"

// createUserDefinedList(...) and readRstUserDefineList(...)

// must always be defined

obLst *Model::createUserDefinedList (string nam, Reader *rdr) {

rdr->error("No user list has been defined");

return NULL;

}

obLst *Model::readRstUserDefinedList (RstReader *rst, string nam) {

return NULL;

}

// createUserDefinedObject(...) and readRstUserDefinedObject(...)

// must always be defined

Obj *Model::createUserDefinedObject (string nam, Reader *rdr) {

rdr->error("No user object has been defined");

return NULL;

}

Obj *Model::readRstUserDefinedObject (RstReader *rst, string nam) {

return NULL;

}

Currently, only Unix type platforms are supported. The modified executable is generated
using a Makefile of this type:
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CMP = system dependent compiler

COP = compiler dependent options

LNK = system dependend linker

LOP = linker dependent options

HDR = folder where mars.h is located

LIB = folder where libmars.a is located

marsU: user.o $(LIB)/libmars.a

$(LNK) $(OPT) -o marsU user.o -L$(LIB) -lm -lz -lmars

user.o: user.cpp

$(CMP) -I$(HDR) $(COP) -o user.o user.cpp

For example, ...
Note that the compiler has to be able to find the header file mars.h. This can be

accomplished using the -I$(HDR) option in the compile line.

21.7.1 User defined list

As described in other sections of this documentation package, lists are used for imple-
menting collections of homogenous objects, such as finite elements, contact elements,
constraint elements, etc. This subsection is designed to help users create their own ele-
ments and lists that operate on them. Complete documentation on this subject would
require extensive information. At this time we are providing a basic explanation with
some examples. This documentation will be expanded in the future.

First, some knowledge of Object Oriented Architecture and Programming is required.
Users who are not familiar with Object Oriented Programming concepts are encouraged
to google words like ’c++ classes’, ’c++ inheritance’, ’c++ polymorphism’, etc. These
terms are used here assuming the reader has some understanding of their meaning.

We will describe the process using an actual example. In this demonstrative case,
we will implement a 10-node Cosserat tetrahedral element with 42 degrees of freedom:
10x3 translational DoF’s (for the 10 nodes) and 4x3 rotational DoF’s (for the 4 vertex
nodes). The class CosseratTet10 is derived from the basic class Tet whose definition
can be found in file mars.h. Addtional members are added: references to 6 mid-edge
nodes, state variable arrays, etc. The definition for the new class is given below:

class TetCosserat10: public Tet {

protected:

Node *nM[6];

public:

TetCosserat10() { };

virtual ~TetCosserat10() { };

virtual void whatAmI() { cout << "10 node " << endl; };

void setMidEdgeNodes(Node *n[6]) {

for (int i=0; i<6; i++) nM[i] = n[i]; };
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void read(Reader *, Node **);

real calcForces(Node **, real *, Node **, real *);

};

The list class that handles a collection of the new tet elements is named ttL Cosserat10

and is derived from the base class ttLst that handles the basic 4-node tetrahedral geo-
metric element. By doing that, the new class inherits all the methods from the parent
class, including mesh generation methods, post-processing methods, etc. Only a few
polymorphic methods need to be written for the new class. The definition of the new list
class is given below:

ass ttL_Cosserat10 : public ttLst {

public:

ttL_Cosserat10() : ttLst() { };

ttL_Cosserat10(string nm) : ttLst(nm) { initList(); };

virtual ~ttL_Cosserat10() { };

void initList() { ttLst::initList(); };

string getListSubType() { return "Cosserat10"; };

Object *createNewObject() { return (Object *)(new Tet10()); };

Tet *createNewTet() { return (Tet *)(new Tet10()); };

bool processCommand(Reader *, string);

void readLst(Reader *); // polymorphic

void initialize(); // polymorphic

real calcFrc(); // polymorphic

void insertMidEdgeNodes(); // list specific

void examine(); // polymorphic

};

There are a few significant methods that need to be written. The first method, void
readLst(Reader *), is a polymorphic method invoked during the reading phase. This
method reads the input file and interprets commands specific to the new list, either for
entering parameters or for performing tasks:

void ttL_Cosserat10::readLst (Reader *rdr) {

rd1 = rdr;

while (true) {

rdr->readLine();

string lbl = rdr->getShortLabel();

if (lbl == "}") {

break;

} else if (obLst::processCommand(rdr, lbl)) {

if (rd2 == NULL) rdr = rd1; else rdr = rd2;

} else if (ttLst::processCommand(rdr, lbl)) {

} else if (processCommand(rdr, lbl)) {

} else
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rdr->error(" Invalid keyword in tXLst::readLst");

}

}

The second method, void initialize(), is also polymorphic and is invoked during the
initialization phase. The purpose of this method is to initialize all elements.

void ttL_Cosserat10::initialize () {

setStaticVariables();

TetCosserat10 **tt = (TetCosserat10 **)ob;

for (int i=0; i<num; i++)

tt[i]->init();

}

The third method, real calcFrc(), is a polymorphic method invoked in the solver loop.
The purpose of this method is to compute internal nodal forces withing each element
based on its deformation history and deformation rate. This method looks like this.

real ttL_Cosserat10::calcFrc () {

if (listIsNotActive()) return M_BIG;

obLst::calcFrcInit(); // prints debug info if necessary

setStaticVariables(); // set element static variable

// setComputeTimeStep to true if element computes stable time step

obLst::setComputeTimeStepFlag(false);

// creates arrays for storing node pointers and relative force

// and moment increments

obLst::createArrays(10, 4);

// the first argument, 10, is the number of nodes for which forces

// are computed, nodes per element with 3 translational DoF’s

// the second argument, 4, is the number of nodes for which moments

// are computed, nodes per element with 3 rotational DoF’s

Node **ndF = (Node **)obF; // cast object pointers to node pointers

Node **ndM = (Node **)obM;

// cast object pointer to element pointers

TetCosserat10 **tt = (TetCosserat10 **)lo;

int i, ntt = nlo;

#ifdef _OPENMP

#pragma omp parallel private(i)

#pragma omp for

#endif

for (i=0; i<ntt; i++)

tt[i]->calcForces(ndF+10*i, f+30*i, ndM+4*i, m+12*i);

// element forces and forces at the nodes are added to the nodes

// in method procForces

obLst::procForces();

return M_BIG;

}
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Note that if the element formulation had only translational Dof’s, the method could be
simplified to

obLst::createArrays(10, 0);

Node **ndF = (Node **)obF;

TetCosserat10 **tt = (TetCosserat10 **)lo;

int i, ntt = nlo;

for (i=0; i<ntt; i++)

tt[i]->calcForces(ndF+10*i, f+30*i);

The force and moment increments are saved in arrays f and m and later added to the
nodes in method procForces(). This is done to avoid memory overwriting within the
OpenMP parallel loop containing the calcForces element method.

In addition to the three polymorphic methods discussed above, there are two methods
that are relevant. The first method bool processCommand(Reader *, string) is used
to process list specific input commands, such as InsertMidEdgeNodes and loooks like
this:

bool ttL_Cosserat10::processCommand (Reader *rdr, string lbl) {

if (lbl == "InsertMidEdgeNodes") {

insertMidEdgeNodes();

} else

return false;

return true;

}

The second method is void insertMidEdgeNodes() and like the name says, its purpose
is to add mid-edge nodes to a regular 4-node tetrahedral mesh and convert it to a 10-node
tratrahedral mesh.

The element formulation is implemented in method TetCosserat10::calcForces().
The example below shows how to retrieve the current element data and how to save the
computed forces and moments at the nodes in the global list array for later processing.

real TetCosserat10::calcForces (Node **ndF, real *f, Node **ndM, real *m) {

// retrieve nodal coordinates and velocties

real c0x = nd[0]->getCx(); // coordinate, node 0, direction x

real v0x = nd[0]->getVx(); // velocity, node 0, direction x

real w0x = nd[0]->getwx(); // rotation rates, node 0, direction x

. . .

// enter detail of formulation here

. . .

// store nodes and forces in arrays

ndF[0] = nd[0]; // vertex nodes (force array)

...

ndF[4] = nM[0]; // midnodes (force array)

ndM[0] = nd[0]; // vertex nodes (moment array)
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f[ 0] = f0x; f[ 1] = f0y; f[ 2] = f0z; // forces at node 0

f[ 3] = f1x; f[ 4] = f1y; f[ 5] = f1z; // forces at node 1

. . .

m[ 0] = m0x; m[ 1] = m0y; m[ 2] = m0z; // moments at node 0

. . .

return M_BIG;

}

21.7.2 User defined material

In the MARS architecture, the class Material is derived from the generic class Obj, which
includes various types of entities, such as ReferenceSystem’s, LoadCurve’s, etc. The
new material is integrated in the Mars architecture using the Model::readUserDefinedObject().

class myMaterial : public Material {

. . .

}

. . .

Obj *Model::createUserDefinedObject (string nam, Reader *rdr) {

return new myMaterial(nam);

}

The class definition for a new material follows the pattern below (the class name myMaterial
can be replaced by any other name which is not already used for defining another class.
In the name has already been used, this will be apparent during compilation.

class myMaterial : public Material {

private:

// parameters for material model

public:

myMaterial() { };

myMaterial(string n) : Material(n) { };

~myMaterial() { };

void read(Reader *);

// other methods

The best way to write a new material model is to start from an existing model; for ex-
ample, the linear elastic material model which is made available by request and includes
comments. There are several polymorphic methods, which may need to be defined de-
pending on the model formulation and required functionality. This is also described in
the sample section.

In the input file, the new material is defined using the command UserDefinedObject

and later refereced as any other material.

UserDefinedObject Steel {

// input data
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}

HexSolidList Part FBSingleIP {

Material Steel

. . .

21.7.3 User defined mesh generator

Below is an example of an Obj class whose only purpose is generating a mesh by taking
advantage of the Mars methods.

#include "mars.h"

class GenCube : public Obj {

public:

GenCube(string nam) : Obj(nam) { };

~GenCube() { };

void read(Reader *);

};

void GenCube::read (Reader *rdr) {

real edge = 0.; // length of edge

int nel = 0; // number of elements per side

while (true) {

string lbl = rdr->getShortLabel();

if (lbl == "{") {

} else if (lbl == "}")

break;

else if (lbl == )

rdr->readLine();

else if (lbl == "Side")

edge = rdr->readLength();

else if (lbl == "Elements")

nel = rdr->getInt();

else

rdr->error("Invalid keyword in GenCube::read");

}

int i, j, k;

int nps = nel + 1;

int nnd = nps * nps * nps;

ndLst *ndL = new ndLst("Cube");

ndL->allocate(nnd);

real crx, cry, crz, dc = edge/nel;

// generate nodes

Node ****nd = new Node***[nps];

for (i=0; i<nps; i++) {
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nd[i] = new Node**[nps];

crx = i * dc;

for (j=0; j<nps; j++) {

nd[i][j] = new Node*[nps];

cry = j * dc;

for (k=0; k<nps; k++) {

crz = k * dc;

nd[i][j][k] = new Node(crx, cry, crz);

ndL->append(nd[i][j][k]);

}

}

}

hxLst *hxL = new hxLst("Cube");

hxL->setNodeList(ndL);

int nhx = nel * nel * nel;

hxL->allocate(nhx);

Node *n1, *n2, *n3, *n4, *n5, *n6, *n7, *n8;

Hex *hx;

// generate hex solid elements

for (i=0; i<nel; i++) {

for (j=0; j<nel; j++) {

for (k=0; k<nel; k++) {

n1 = nd[ i][ j][ k];

n2 = nd[i+1][ j][ k];

n3 = nd[i+1][j+1][ k];

n4 = nd[ i][j+1][ k];

n5 = nd[ i][ j][k+1];

n6 = nd[i+1][ j][k+1];

n7 = nd[i+1][j+1][k+1];

n8 = nd[ i][j+1][k+1];

hx = new Hex();

hx->setNodes(n1, n2, n3, n4, n5, n6, n7, n8);

hxL->append(hx);

}

}

}

ndL->reindex();

hxL->reindex();

Lists *lists = (Lists *)lst;

// add list to general

lists->addLst(ndL);

lists->addLst(hxL);

}

// --------------------------------------------------------------------
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// createUserDefinedList(string) must always be defined

obLst *Model::createUserDefinedList (string nam, Reader *) {

return NULL;

}

// --------------------------------------------------------------------

// createUserDefinedObject(string) must always be defined

Obj *Model::createUserDefinedObject (string nam, Reader *) {

return new GenCube(nam);

}

A sample input for generating a 2. in cube with 5 elements per side is given below:

Generation of hex element cube

ControlParameters {

Units English

}

UserDefinedObject Cube {

Side 2. in

Elements 5

}

EOF

21.7.4 User defined load curve

Below is an example of an Obj class derived from the LoadCurve class that implements
a sinusoidal force function:

#include "mars.h"

// --------------------------------------------------------------------

class SinFunction : public LoadCurve {

private:

real A; // amplitude

real w; // frequency

public:

SinFunction(string nam) : LoadCurve(nam) { };

~SinFunction() { };

void read(Reader *);

real interp(real x) { return (A*sin(w*x)); };

};

void SinFunction::read (Reader *rdr) {

A = w = 0.;

while (true) {

string lbl = rdr->getShortLabel();
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if (lbl == "{") {

} else if (lbl == "}")

break;

else if (lbl == "")

rdr->readLine();

else if (lbl == "Frequency")

w = rdr->readFrequency();

else if (lbl == "Amplitude")

A = rdr->readForce();

else

rdr->error("Invalid keyword in SinFunction::read");

}

}

// --------------------------------------------------------------------

// createUserDefinedList(string) must always be defined

obLst *Model::createUserDefinedList (string nam, Reader *) {

return NULL;

}

// --------------------------------------------------------------------

// createUserDefinedMaterial(string) must always be defined

Obj *Model::createUserDefinedObject (string nam, Reader *) {

return new SinFunction(nam);

}

21.7.5 Multiple lists and objects in a single user.cpp file

Because the SinFunction is derived from the LoadCurve function, it can be referenced
by its name in every class that employs a load curve for specifying a relationship. For
example, the load function above can be used for specifying nodal loads.The versatility
of the user-defined interface makes it possible to introduce any number of different lists
and objects simultaneously. This is accomplished as shown in the example below:

#include "mars.h"

// --------------------------------------------------------------------

class MyFirstTetList : public ttLst { // user defined tet list

. . .

}

// --------------------------------------------------------------------

class MySecondTetList : public ttLst { // another user defined tet list

. . .

}

// --------------------------------------------------------------------

class MyHexList : public hxLst { // user defined hex list

. . .

}
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// --------------------------------------------------------------------

class MyMaterial : public Material { // user defined material

. . .

}

// --------------------------------------------------------------------

class MyLoadCurve : public LoadCurve { // user define load curve

. . .

}

// --------------------------------------------------------------------

// createUserDefinedList(string) must always be defined

obLst *Model::createUserDefinedList (string nam, Reader *rdr) {

string lbl = rdr->getShortLabel();

if (lbl == "MyFirstTetList")

return new MyFirstTetList(nam);

else if (lbl == "MySecondTetList")

return new MySecondTetList(nam);

else if (lbl == "MyHexListList")

return new MyHexList(nam);

rdr->error("Invalid keyword for user defined list type");

return NULL;

}

// --------------------------------------------------------------------

// createUserDefinedMaterial(string) must always be defined

Obj *Model::createUserDefinedObject (string nam, Reader *) {

string lbl = rdr->getShortLabel();

if (lbl == "MyMaterial")

return new MyMaterial(nam);

else if (lbl == "MyLoadCurve")

return new MyLoadCurve(nam);

rdr->error("Invalid keyword for user defined object type");

return NULL;

}

These classes would be accessed in the input file using the following isntructions:

UserDefinedList ’materialName’ MyMaterial {

. . .

}

UserDefinedList ’curveName’ MyLoadCurve {

. . .

}

UserDefinedList ’listName’ MySecondTetList {

Material ’materialName’

. . .

}
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Note that it is not necessary to put all the coding in a single user.cpp file. Indeed, it is
possible to create multiple files for improved readability. The above example could be
arranged as follows:

Header file for class MyFirstTetList

class MyFirstTetList : public ttLst {

. . .

};

Source file for class MyFirstTetList

#include "mars.h"

#include "MyFirstTetList.h"

void MyFirstTetList::method1 {

. . .

}

. . .

Header file for class MySecondTetList

class MySecondTetList : public ttLst {

. . .

};

Source file for class MySecondTetList

#include "mars.h"

#include "MySecondTetList.h"

void MySecondTetList::method1 {

. . .

}

. . .

Header file for class MyHexList

class MyHexList : public hxLst {

. . .

};

Source file for class MyHexList

#include "mars.h"

#include "MyHexList.h"

void MyHexList::method1 {

. . .
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}

. . .

Header file for class MyMaterial

class MyMaterialList : public Material{

. . .

};

Source file for class MyMaterial

#include "mars.h"

#include "MyMaterial.h"

void MyMaterial::method1 {

. . .

}

. . .

Source file for user.cpp

Source file for user.cpp

#include "mars.h"

#include "MyFirstTetList.h"

#include "MySecondTetList.h"

#include "MyHexList.h"

#include "MyMaterial.h"

#include "MyLoadCurve.h"

// createUserDefinedList(string) must always be defined

obLst *Model::createUserDefinedList (string nam, Reader *rdr) {

string lbl = rdr->getShortLabel();

if (lbl == "MyFirstTetList")

return new MyFirstTetList(nam);

else if (lbl == "MySecondTetList")

return new MySecondTetList(nam);

else if (lbl == "MyHexListList")

return new MyHexList(nam);

rdr->error("Invalid keyword for user defined list type");

return NULL;

}

// createUserDefinedMaterial(string) must always be defined

Obj *Model::createUserDefinedObject (string nam, Reader *) {

string lbl = rdr->getShortLabel();

if (lbl == "MyMaterial")

return new MyMaterial(nam);

else if (lbl == "MyLoadCurve")

return new MyLoadCurve(nam);
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rdr->error("Invalid keyword for user defined object type");

return NULL;

}

Make file

Make file

OBJ = user.o MyFirstTetList.o MySec

marsU: $(LIB)/libmars.a $(OBJ)

$(LNK) -o marsU -L$(LIB) $(OPT) $(OBJ) -lm -lz -lmars

MyFirstTetList.o: MyFirstTetList.cpp MyFirstTetList.h $(INC)/mars.h

$(CMP) $(OPT) MyFirstTetList.cpp $<

MyFirstTetList.o: MyFirstTetList.cpp MyFirstTetList.h $(INC)/mars.h

$(CMP) $(OPT) MyFirstTetList.cpp $<

MyHexList.o: MyHexList.cpp MyHexList.h $(INC)/mars.h

$(CMP) $(OPT) MyHexList.cpp $<

MyMaterial.o: MyMaterial.cpp MyMaterial.h $(INC)/mars.h

$(CMP) $(OPT) MyMaterial.cpp $<

MyLoadCurve.o: MyLoadCurve.cpp MyLoadCurve.h $(INC)/mars.h

$(CMP) $(OPT) MyLoadCurve.cpp $<

MyMaterial.o: MyMaterial.cpp MyMaterial.h $(INC)/mars.h

$(CMP) $(OPT) MyMaterial.cpp $<

21.7.6 Restart Procedures

If user defined objects or lists must be able to accomodate restart procedures, additional
methods must be defined

string getTag();

void writeRst(RstWriter *);

void readRst(RstReader *);

Obj *Model::readRstUserDefinedObject(...);

obLst *Model::readRstUserDefinedList(...);

The method getTag() must return the string "uO" for user defined objects and "ud"

for user defined lists. This strings are written to the restart file and used during restart
to redirect the instantiation of object or lists to the readRstUserDefinedObject() and
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readRstUserDefinedList() respectively. If a single object or list are defined, then these
two methods are trivial:

Obj *Model::readRstUserDefinedObject (RstReader *rst, string nam) {

return (new myNewObject(nam))

}

obLst *Model::readRstUserDefinedList (RstReader *rst, string nam) {

return (new myNewList(nam))

}

If multiple objects or lists are defined in user.cpp, then the readRst methods must be
able to instantiate the proper object or list. This can be accomplished using the names
of the objects or lists, for example:

Obj *Model::readRstUserDefinedObject (RstReader *rst, string nam) {

if (nam == "LoadHist")

return (new myLoadCurve(nam))

else if (nam == "Steel")

return (new myMaterial(nam))

}

Using object/list names makes the method above dependent on the input file. If it is
necessary to make the processure input file independent, ES3 will help you write the
proper coding.

The methods writeRst() and readRst() are used to save the data to the restart file
and then read it into memory during the restart procedure. Writing and reading must
be consistent.

Because tags, like uO and ud, are used in time history lists and plot lists to identify
objects and lists, the user must ensure to use these tags. For example:

UserDefineList ’listName’ {

. . .

}

PlotList ’plotListName’ {

. . .

udL-’listName’ . . .

}

21.7.7 Time History Variables

This subsection explains how to create methods for extracting variables and printing
them to a time-history list for user defined-lists and elements within a user-defined list.
There are essentially five polymorphic methods that are used to accomplish this task.

int List::parseVariableIndex(string lbl, Reader *rdr);

Object *List::parseObject(Reader *rdr);
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string List::makeVariableLabel(int elt, int var);

real List::getValue(int var);

real Object::getValue(int var);

The first two methods are used for reading the data from the input file. The last three
methods are used for providing data labels and values to the methods that write to the
time-history file. In the great majority of cases, the user wants to modify an existing class
and implement a specific formulation. For this reason, we will explain the procedures
using an example of a derived class.

Let’s consider a new formulation for a tetrahedral element. This would rely on two
classes: one for the tetrahedral element object, and the other one for the list of the new
tets. These two classes are derived from the parent Tet class (for inheriting the geomet-
rical properties and methods of a tetrahedral element) and ttLst class (for inheriting the
methods of a tet list).

class Tet_UD : public Tet {

. . .

};

class ttL_UD : public ttLst {

. . .

};

Let’s consider the case where we want to generate the time history of a parameter not
currently available in the element formulation, for example the work perfomed by the
internal forces. This quantity can be updated at each time step in the calcFrc() method
and must be saved either as an additional state variable or as a new member of the class
definition. If it is saved as an additional state variable, then it is easily accessed through
the standard commands. Let’s assume that we use a new member named t[wrk] which
must explicitly appear in the class definition

class Tet_UD : public Tet {

private:

real wrk; // new member

. . .

};

The logical command in the input file for selecting the new quantity may look like this

TimeHistoryList Hist {

. . .

tt-’listName’ ’elementIndex’ InternalWork

}

where InternalWork is a keyword chosen to select the new member wrk. We also want to
maintain the functionality already provided by the parent class. The way to accomplish
this objective is to redefine the parseVariableIndex() method so that is assigns an
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index of 1001 when it encounters the label InternalWork. Otherwise, it uses the method
of the parent class. A large index is recommended so that it does not overlaps with
smaller indices used in the parent class.

int ttL_UD::parseVariableIndex (string lbl, Reader *rdr) {

if (lbl == "InternalWork")

return 1001;

else

ttLst::parseVariableIndex(lbl, rdr);

}

Similarly, the user should redefine the method for generating the variable label in the
time history file

string ttL_UD::makeVariableLabel (int elt, int var) {

if (elt != 0 && var == 1001) {

stringstream oss;

oss << "ttL-" << name << "-" << elt << ": internal work ";

return (oss.str());

} else

return ttLst::makeVariableLabel(elt, var);

}

and the getValue() method in the user-defined element class

real Tet_UD:getValue (int var) {

if (var == 1001)

return wrk;

else

return Tet::getValue(var);

}

21.8 report a problem

If you are experiencing problems while setting up MARS input files and you are re-
questing help from ES3 staff, please use the following procedures for providing adequate
information.

• Provide a brief description of the problem you are trying to solve and of the MARS
model which you intend to use. The first two subsections of the problems described
in the ”MARS Example Library” document should give an idea of what would
be useful, even though it is not necessary to go in great details. Figures of the
geometry can be useful.

• Brief description of the difficulty encountered while setting up the input files or
executing the simulation (screen captures can be useful)
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• If possible, it would help if you can share the input files so that we at ES3 can do
independent testing and debugging.

For clarity, organize the information in an e-mail in sections with section headings:
1. Problem Description
2. MARS Model and Input
3. Description of Encountered Difficulties
4. Input File Location (if applicable)
Realize that the more information you can provide, the easier it is for us to determine

the problem and fix it or correct your input file.

22 Misc

22.1 Fluid Dynamic List

It is necessary to insert a fluid dynamic list when performing coupled calculations with
fluid dynamic codes. The purpose of this list is to specify the entities that are used in the
data exchange protocol. Only one fluid dynamic list can be specified and it requires no
name. The contents of the list vary depending on which code MARS is coupled to. The
‘FluidDynamicList’ is typically entered at the bottom of the input file, possibly before
the ‘EOF’ (End of File) line. The general syntax is

FluidDynamicList {

. . .

}

Following are a list of codes to which MARS has been coupled to and the commands to
specify the exchange data.

22.1.1 IFEM - (RPI)

The exchange protocol between MARS and IFEM establishes the following exchange
of data. During the initialization phase MARS sends 1) the number of mesh nodes
participating in the coupling, 2) their initial mass, and 3) their initial position. During
the solution phase MARS receives 1) integration time step, which is controlled by IFEM,
2) velocities of the nodes and sends back 1) structural forces (internal and external) at
the nodes.

Even if the selection defaults are chosen (all structural nodes and no facets) the
‘FluidDynamicList’ must be present in the input file. It this case, it is entered with no
internal data like this:

FluidDynamicList {

}

A set of triangular faces from lists that had been previously defined can be selected and
passed to IFEM during the initialization phase. phase.
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FluidDynamicList {

tfL-‘List1Name’}

tfL-‘List2Name’}

}

22.1.2 Gemini

To be written

22.2 Mechanisms List

22.2.1 Shock Strut Assembly

The shock-strut assembly mechanism computes the forces generated by a shock absorber
that connects two nodes in the model. At each step, the algorithm computes the distance
between the nodes and their relative velocity in the direction aligned with them. The
stroke is computed by subtracting the distance from a stroke offset input parameter:

Stoke = StrokeOffset - Distance

The value of the Stroke is used to interpolate a tabulated function (‘ForceStroke-
Curve’), which give the hydraulic static force generated by the gas or spring in compres-
sion. The range of the stroke is limited by maximum and minimum values. If the nodes
try to move closer or further away then the stroke range allows, then they hit hard stops:
these are implemented using penalty functions, with user-prescribed stiffness values. The
viscous effect of hydraulic fluid is approximated using a linear expression:

DampingForce = Damping * RelativeVelocity

To avoid wild oscillations in the damping force, a moving average of the relative
velocity is used:

Vrel−movAv = 0.99 ∗ Vrel−movAv + 0.01 ∗ Vrel
The two constants 0.99 and 0.01 are currently hard-coded. The input commands for

the ShockStrut mechanism are given below:

Mechanisms {

ShockStrut {

FirstNode ‘NodeListName’ cl 0. cm 0. cm 10. cm

SecondNode ‘NodeListName’ cl 0. cm 0. cm 40. cm

ForceStrokeCurve ‘CurveName’

MinimumStroke 0. in

MaximumStroke 16. in

StrokeOffset 81. cm

Stiffness 1.e6 lb/cm

Damping 80000. N/m

}

}

The units of damping are [Force]/[Velocity]. Since these units are currently not available
in MARS, assume time is given in seconds and use units for [Force]/[Length].

The history of significant variables can be printed out using the following commands.
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TimeHistoryList ‘ListName’ {

. . .

mm-‘listName’ Stroke

mm-‘listName’ StaticForce

mm-‘listName’ DampingForce

mm-‘listName’ BottomTopForce

mm-‘listName’ TotalForce

}

22.2.2 Brake

The brake mechanism provides a braking moment to a wheel. In this formulation the
wheel motion is associated to that of a reference node; note that the wheel and tire can be
modeled in great detail, however, it is necessary to associate a single node to the motion
of the wheel and that node should be located on the axis of rotation. The formulation
requires the definition of a ‘Runway’; this is a flat surface which is identified by the first
face of a face list. The face list can consist of triangular or quadrilateral faces. The
surface is used to compute the distance of the axle from the surface and the direction of
the axle parallel to the surface. The braking action is applied as a torque in the direction
opposite of that of rotation. The time history of the braking action is prescribed using a
load curve which is referenced using the ‘BrakingHistory’ command.

Mechanisms {

Brakes {

Node ‘NodeListName’ ‘nodeIndex’

Runway ‘FaceListName’

BrakingHistory ‘CurveName’

}

}

22.2.3 Anti-Lock Brake

The anti-lock brake mechanism . . .

Mechanisms {

AntiLockBrakes {

Node ‘FrontWheels’ 1

Runway ‘FaceList’

RampUpRate ...

}

}

22.3 Collection List

A ‘collection list’ is an assembly of lists that are grouped together for the purpose of
performing the same operation on them. All these operations are done at the pre- or
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post-processing phase. No actual computations are done during the solver loop. In the
input block, the lists are first selected and then the operations on them are performed.
Typical applications of this feature are:

1. Translate or rotate the entire model or part of it.

22.4 Unit Cell

The UnitCell class includes methods for generating a unit cell and for creating a list of
constraints that enforce periodic conditions during a simulation of a unit cell. There
are two phases: generation and simulation. The input for the generation phase has the
following format: format:

Material Concrete LDPM {

MixDesign { . . . }

StaticParameters { . . . }

}

UnitCell Cube {

Material Concrete

Side 2. in

Seed 45435 // seed for random number generator

Generate

}

The parameters for Material and Side are required, the seed is optional. The ‘Generate’
command forces MARS to write a mesh file for unit cell that has been generated. The
mesh file is named ‘UnitCellMesh.mrs’. Note that the nodes are periodic, but the tetra-
hedrals are not. This is because we have not been able to have tetgen generating periodic
tet meshes, when the periodic external facets are prescribed.

The input for the solution phase has the following format:

Material Concrete LDPM {

MixDesign { . . . }

StaticParameters { . . . }

}

TetSolidList UnitCell Ldpm {

Material Concrete

ReadFile UnitCellMesh.mrs

}

UnitCell Cube {

Side 2. in

TetList UnitCell

}

For the solution phase, the class ‘UnitCell’ creates a list of constraints that tie the nodes
on the surface of the unit cell. Although the unit cell does not have a ‘clean’ geometric
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shape, it is topologically similar to a cube.There are eight vertex nodes that are tied
together. The vertex nodes can only rotate and their translations are set to zero. There
are edge nodes that are grouped in sets of four; each set consists of four nodes on four
parallel edges of the cube. There are face nodes that grouped in sets of two; each set
consists of two nodes on opposite faces of the cube. The internal nodes do not appear in
the constraints of the unit cell.

In the initialization phase, the masses of the nodes in each constraint are added up.
The summed mass is then assigned to the nodes of the constraint. During execution, the
forces and moments in each constraint are added up. The summed forces and moments
are then assigned to the nodes of the constraint. This garantees that the nodes in the
constraint move with the same velocity enforcing the conditions of periodicity.

22.5 Load Curve Lists

The LoadCurveList is used to defines a set of pressure time histories at certain spatial
locations.

DYNA3D format

LoadCurveList BlastLoads {

// 1. Enter location and name of data file

[ Directory ../Loads/ ]

Filename pressures.dat

Format dyna3D/shamrc/csv/mars

// 2. Enter spatial distribution type

[ RefenceSystem ‘RS name’ ]

Distribution Plane/Axisymmetric

// 3. Enter units

X-Units time s

Y-Units pressure psi

Z-Units length in {1}

// 4. Enter curve mapping

ReadObjects ‘num-curves’

// index crx cry

1 5. 6.

. . .

// For axysymetric load

ReadObjects ‘num-curves’

// index rad

1 0.

2 1.

. . .

// 5. Modify curves if necessary

Y-Scale 5.

}

253



[1] The Z-Units are the location units in the table

SHAMRC files

This feature was inserted in Mars in 2004 in support of a study for assessing the effects of
closed-in blast on suspension bridge cables. The pressure histories at selected locations
on the surface of the cable were computed using the hydrocode SHAMRC. The pressure
data was provided as a set of files, one file per station. In a separate table, each file was
associated to the spatial coordinates of the station.

A SHAMRC LoadCurveList is typically used in conjunction with quadrilateral or
triangular face lists. The mapping of load curve to face is generally done using the
closest distance criterion. For more information, see the sections related to wet face lists.

LoadCurveList PRSS {

fmt shamrc

// 2. Enter location and name of data files

dir cable04/TNT/run2/station

num 624 // number of curves

Read

// for each curve enter

// 1. index starting from 1

// 2. label

// 3. filename

// 4. station coordinates

1 C001 sta1.ovpr 10.0984 0 0

2 C002 sta2.ovpr 9.33071 3.86614 0

3 C003 sta2.ovpr 9.33071 -3.86614 0

4 C004 sta3.ovpr 7.14173 7.14173 0

5 C004 sta3.ovpr 7.14173 -7.14173 0

. . .

623 C623 sta331.ovpr -9.33071 -3.86614 -190

624 C624 sta332.ovpr -10.0984 -0 -190

cgs2psi

X-Offset -9.54743E-04

}

Currently, Mars input variable are always defined with their dimensions. To satisfy this
requirement, the input will be changed to the following format.

LoadCurveList PRSS {

fmt shamrc

// 2. Enter location and name of data files

Folder cable04/TNT/run2/station

NumberOfCurves 624 // number of curves

TimeUnits s

LengthUnits cm
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PressureUnits cgs

ReadCurves

// for each curve enter

// 1. index starting from 1

// 2. label

// 3. filename

// 4. station coordinates

1 C001 sta1.ovpr 10.0984 0 0

2 C002 sta2.ovpr 9.33071 3.86614 0

3 C003 sta2.ovpr 9.33071 -3.86614 0

4 C004 sta3.ovpr 7.14173 7.14173 0

5 C004 sta3.ovpr 7.14173 -7.14173 0

. . .

623 C623 sta331.ovpr -9.33071 -3.86614 -190

624 C624 sta332.ovpr -10.0984 -0 -190

X-Offset -9.54743E-04 s

}

23 Computing Platforms

This section describes some of the specific set ups on the installation of Mars on specific
computer centers. It is intended to help users setting up their computational environment
on these platforms.

23.1 Mars on borg-SCOREC

The first time you use borg, you need to configure the system so that it can find Mars
and MPI supporting software. Enter the bash shell:

> bash

Edit the .bashrc file in your main folder

$ vi ~/.bashrc

export PATH=.:/bigtmp/peless/Mars:/usr/local/openmpi64/latest/bin:$PATH

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/openmpi64/latest/lib

Insert the following two lines:Activate changes:

$ source ~/.bashrc

Any subsequent time you log in, start the bash shell and the path is automatically
updated.

> bash
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Interactive Execution

To run the OpenMP version of Mars, enter

$ marsO input.mrs

To get the latest version of the built-in manual, enter

$ marsO -H > manual

23.2 Mars on the CCNI system

The first time you use ccni, you need to configure the system so that it can find Mars
and MPI supporting software. Enter the bash shell:

> bash

Edit the .bashrc file in your main folder:

$ vi ~/.bashrc

Insert the following line:

export PATH=.:/gpfs/small/MMCCpeld/Mars:/gpfs/small/MMCCpeld/bin:$PATH

The MMCCpeld/bin folder contains auxillary codes like tetgen that may be used for
specific tasks, such as model generation of LDPM tetrahedral meshes. Activate changes:

$ source ~/.bashrc

Any subsequent time you log in, start the bash shell and the path is automatically
updated.

> bash

Interactive Execution

To run the OpenMP version of Mars, enter

$ marsO input.mrs

To get the latest version of the built-in LaTex manual, enter

$ marsO -d latex
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Batch Execution

To run the OpenMP version of Mars in batch mode, create a script ( e.g. job.sh )

#!/bin/bash

echo ‘job starting’

cd ‘yourProblemFolder’

marsO -B input.mrs > output

Then submit it using the sbatch command:

sbatch -p opterons -n 1 -t 120 -o ./out ./job.sh

where

-p opteron: is the partition

-n 1: is the number of compute nodes

-t 120: is the maximum time in minutes

-o ./out: is where the output goes

job.sh: is the input script

To check status, type squeue. To list partitions, type sinfo

Batch Execution - MPI

First, you must configure your envirnoment. Information can be found at

wiki.ccni.rpi.edu/index.php/RedHat_5_and_Modules]

Load the MPI environment:

module load mpi/openmpi-1.4-gcc41

Create a script file (e.g. job.sh ) to control batch execution

#!/bin/bash

echo ‘job starting’

cd ‘yourProblemFolder’

mpirun -n 32 marsM -B input.mrs > output

Then submit it using the sbatch command:

sbatch -p opterons -n 32 -t 120 -o ./out ./job.sh
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23.3 Mars on NWU Quest

The first time you use quest, you need to configure the system so that it can find Mars
and MPI supporting software. Enter the bash shell:

> bash

Edit the .bashrc file in your main folder:

$ vi ~/.bashrc

Insert the following line:

export PATH=.:/hpc/home/dpw466/Mars:$PATH

$ source ~/.bashrc

Any subsequent time you log in, start the bash shell and the path is automatically
updated.

> bash

Interactive Execution

To run the OpenMP version of Mars, enter

$ marsO input.mrs

To get the latest version of the built-in LaTex manual, enter

$ marsO -Dl

Batch Execution - MPI

Load the MPI environment:

module load mpi/openmpi-1.4.3-gnu

Create a script file (e.g. job.sh ) to control batch execution

#!/bin/bash

#MOAB -l nodes=4:ppn=8

#MOAB -l walltime=0:59:00

#MOAB -j oe

#MSUB -A p20288

ulimit -s unlimited

cd ‘yourProblemFolder’

mpirun marsM -B input.mrs > output

Then submit it using the sbatch command:

msub job.sh

Check the status using the command:

showq | grep x

where x is your username.
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23.4 Mars on hpc-diamond

Diamond contains 1,920 compute nodes (15,360 compute cores). Each compute node
contains two 2.8-GHz Intel Xeon 64-bit quad-core Nehalem processors and 24 GBytes
of dedicated memory. The nodes are connected to each other in a HyperCube topology
DDR 4X InfiniBand network.

Pre-Processing

The Intel c++ compiler ( icc ) is available on diamond and this is the software that
should be use for pre-processing a Mars input file. The syntax is

icc -E -D... input.mrs > inputP.mrs

Executing the OpenMP version of Mars

The OpenMP versions of Mars are stored in the /usr/local/u/peless/Mars/ folder.
Executables are named using the following convention, marsO-yymmdd or marsOyymmdd,
where yymmdd is a six digit number representing the date of the executable. marsOyymmdd
employs the shared memory model. On diamond it can only be executed on a single
compute node over 8 compute cores. A typical bash script is listed below

#!/bin/bash

#PBS -A ERDCV02221SPS

#PBS -l walltime=10:00:00

#PBS -N Ldpm4pt2

#PBS -q standard

#PBS -j oe

#PBS -l select=1:ncpus=8:mpiprocs=1

# select = compute nodes requested

# ncpus must equal 8

# mpiprocs = cores/node

#PBS -l place=scatter:excl

# Allows PBS to use any available nodes. Excludes other users

# from using your nodes while they are scheduled to you

cd /work/peless/1104Jov/4pt2

export OMP_NUM_THREADS=8

/usr/local/u/peless/Mars/marsO110524 -B input.mrs > outOMP

# if you are using the C shell

setenv OMP_NUM_THREADS 8

/usr/local/u/peless/Mars/marsO110524 -B input.mrs

Executing the MPI version of Mars

The MPI versions of Mars are stored in the /usr/local/u/peless/Mars/ folder. Exe-
cutables are named using the following convention marsM-yymmdd or marsMyymmdd, where
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yymmdd is a six digit number representing the date of the executable. marsM employs the
distributed memory model. On diamond it can only be executed on multiple compute
nodes and offers much bigger performance gains over the OpenMP version. A typical
script is shown below

#!/bin/bash

#PBS -A ERDCV02221SPS

#PBS -l walltime=10:00:00

#PBS -N Ldpm4pt2

#PBS -q standard

#PBS -j oe

#PBS -l select=4:ncpus=8:mpiprocs=8

# select = compute nodes requested

# ncpus must equal 8

# mpiprocs = cores/node

#PBS -l place=scatter:excl

# Allows PBS to use any available nodes. Excludes other users

# from using your nodes while they are scheduled to you

cd /work/peless/1104Jov/4pt2

mpiexec_mpt -np 32 /usr/local/u/peless/Mars/marsM110524 -B input.mrs > out032

Executing the Hybrid version of Mars

Since 2009, the marsM version of mars implements the hybrid model. In a ‘hybrid’
execution, multiple instances of the code are run on multiple compute nodes and each
instance runs multiple OpenMP threads. For example, one can run 16 instances and each
instance runs four threads. This requires 16x4 = 64 compute cores = 8 compute nodes.
The commands for executing this hybrid run are

# if you are using the C shell

setenv OMP_NUM_THREADS 4

mpirun -np 16 /usr/local/u/peless/Mars/marsM110524 -B input.mrs

It appears that there is a slight benefit in running the hybrid version up to 4 threads.
When 8 threads are used, there is no significant benefit. This may be because as long as a
processor is using its 4 cores on 4 parallel threads, the four threads work very efficiently.
When 8 threads are run on two processors, then there may be conflicts in accessing the
shared memory. In any case, testing on a specific problem may be the best way to figure
out the optimal configuration.

#!/bin/bash

#PBS -A ERDCV02221SPS

#PBS -l walltime=10:00:00

#PBS -N Ldpm4pt2

#PBS -q standard

#PBS -j oe
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#PBS -l select=4:ncpus=8:mpiprocs=2

# select = compute nodes requested

# ncpus must equal 8

# mpiprocs = cores/node

#PBS -l place=scatter:excl

# Allows PBS to use any available nodes. Excludes other users

# from using your nodes while they are scheduled to you

cd /work/peless/1104Jov/4pt2

export OMP_NUM_THREADS=4

mpiexec_mpt -np 8 /usr/local/u/peless/Mars/marsM110524 -B input.mrs > out032

23.5 Mars on Windows PCs

PC versions of MARS are also available for computers using the MS Windows operating
system. However, since most of the development and execution of MARS is done on
Unix based computers (including Apple computers which employ a Unix based operating
systems), we recommend that the Windows PC intended for usage has the cygwin soft-
ware installed. As most of engineers already know, cygwin provides a Unix like interface
to PC users. The following directives are given assuming that cygwin is available. This
approach makes it possible to use MARS consistently across different operating systems.

Note that the default installation of cygwin does not provide all the functionality that
is needed. You must check additional modules.

This is compiled using the Visual Studio 2008 C++ compiler.
First, place the executable marsW in a folder of your choice and either put that folder

in the PATH or make an alias

alias mars=$MARSPATH/marsWvs

so that marsWvs is executed when you type mars at the prompt. Try it typing mars -h

to start an interactive help session and enter Q to exit).

24 Pre-Processing and Mesh Generation Software

Mars interfaces with two mesh generation packages for creating tetrahedral solid meshes
(tetgen) and two-dimensional triangular meshes (Triangle). Both programs are freely
available to researchers on the Internet. Both programs are copyrighted. To avoid copy-
right infringment, ES3 is not distributing source or binaries for the two programs, but we
are refering users to download software from their respective websites and install them
following the directions provided by the authors.

Both programs are executed as external modules. More precisely, MARS writes input
files for either program, executes the programs as separate threads using the command()

function, and reads the mesh from the output files created by the programs. This process
is transparent to the user. However, it is critical to have the two programs available in
the PATH. This can be accomplished in two ways. First, symbolic links can be created in
a folder already in the PATH that point to the executables:
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ln -s $TETGEN-FOLDER/tetgen $BIN-FOLDER/tetgen

Second, the folders where the executable have been generated can be placed in the PATH:

export PATH=$PATH:$TETGEN-FOLDER:$TRIANGLE-FOLDER

Note: in the lines above, $TEGEN-FOLDER, $TRIANGLE-FOLDER, and $BIN-FOLDER must
be replaced by the names of actual folders.

24.1 Triangle

Triangle generates exact Delaunay triangulations, constrained Delaunay triangulations,
conforming Delaunay triangulations, Voronoi diagrams, and high-quality triangular meshes.
The latter can be generated with no small or large angles, and are thus suitable for finite
element analysis.

Triangle was developed by Dr. Jonathan R. Shewchuck and is available at

http://www.cs.cmu.edu/~quake/triangle.html

Triangle is used in Mars for generating triangular meshes of flat surfaces.

24.2 Tetgen

TetGen is a program to generate tetrahedral meshes of any 3D polyhedral domains.
TetGen generates exact constrained Delaunay tetrahedralizations, boundary conforming
Delaunay meshes, and Voronoi partitions.

Triangle was developed by Dr. Hang Si and is available at

http://wias-berlin.de/software/tetgen/

Tetgen is used in Mars mainly for generating tetrahedral meshes for LDPM models.

25 Post-Processing Software

25.1 Quasar

QUASAR is the graphical postprocessor for the MARS results.
There are two version of the QUASAR program. The first version is based on the

GLUT library The second version is written in JAVA
Both versions have been ported to various operating systems. The JAVA version is

no longer supported.

25.1.1 Quasar User Manual (GLUT)

The version of QUASAR is written in C++. It employs OpenGL for 3-D rendering and
GLUT for a rudimentary UI. It requires the user to memorize the functionality of some of
the keyboard keys but it is a lot faster than the Java version for rendering large models.
It had been tested under Linux and under Windows (cygwin).
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Viewing plot files using QUASAR

The plot files generated by Mars are viewable using the quasar post-processor. quasar is
based on the OpenGL library for three-dimensional rendering. The execution command
is

quasar [input file name]

Currently, quasar does not have a fully developed GUI interface, although it uses the
pop-up menus provided by the GLUT library for many of its tasks. To make thinks
efficient, control of the model is done by a combination of keyboard hits and mouse
motion.

Repositioning the model

The model can be repositioned by rotating, translating, and zooming the model in front
of the viewer. The motion is achieved by moving the mouse. In earlier versions of Quasar,
the functionality of the mouse motions was preselected by pressing one of these four keys
’t’, ’r’, ’e’, and ’w’.

t: turn translation on
r: turn rotation around two axis on
e: turn zooming on (motion of the mouse up and down)
w: turn spinning in the third direction on (motion of the mouse left and right)
When manipulating the model, (if you are right handed) you would keep the four

fingers of the left hand on the w, e, r, and t keys and the right hand on the mouse. You
can then click the key to select what motion the mouse affects and move the model using
the mouse.

In later versions of Quasar, the functionality was modified to be consistent with the
functionaly of Paraview.

Simple click and drag: turn model around the two axis co-planar with the screen
Click and drag while pressing the [Shift] key: spin model around axix perpendicular

to the screen.
Click and drag while pressing the [Control] key: zoom in and out
Click and drag while pressing both the [Shift] and [Control] keys simultaneously:

translate the model. [Mar 2011] The combination [Shift] [Control] does not work on
Windows/Cygwin, quasar was slightly modified so that translation can also be accom-
plished by pressing the [Alt] key on all systems.

Advancing frames in a family of files

If mars had generated a family of files during its execution,(for example, a series of
PLOT.000, PLOT.001, PLOT.002 files created by the PlotList PLOT command) you can
move back and forth through the sequence pressing the < and > keys. If your graphics card
is fast enough and the model is not too complicated you can achieve a good animation
effect interactively.
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Saving and loading a viewing configuration

If you like the way the model is being displayed, you can save the configuration parameters
by pressing the [Shift]W (write) key. At any time the model can be redisplayed in the
saved configuration by pressing the [Shift]R (read) key.

Viewing mesh grids, outlines, faces and particles.

When quasar starts, the outline, faces, and particles are automatically displayed. It is
possible to toggle all these quantities on and off by pressing the ’f’, ’g’, ’o’, and ’p’ keys:

f: toggle displaying of all faces in the model
g: toggle displaying of the mesh grid
o: toggle displaying of outline
p: toggle displaying of spherical particles (and cylindrical surfaces)
This can be very useful when dealing with a complex model where it takes a while to

repaint the frame. In such cases, particles and faces can be turned off and the model can
be repositioned quickly using its outline. Once the desired position is achieved, toggle
on the desired entities.

Saving the screen to a graphics file

You can save the current quasar screen to a ppm file that can be later incorporated in a
WORD document by pressing the [Shift]-G key. This generates a file named ..

Turning model components on and off

You can select what parts of the models to display by pressing the right button of the
mouse. This action brings a pop-up menu with six entries. Select [Model] and the rest
should be intuitive.

Making frames for an animation

Press [Shift]M (movie) or press the right button of the mouse to bring up the pop-up
menu and select [Options][Generate Movie Frames]. This will generate a sequence of
plot.ppm.nnn files that can be later linked to make a Quicktime movie file.

25.1.2 Quasar File Format

The ASCII format for QUASAR input files consists of a set of optional information lines
and a set of geometric entity lists. Currently, QUASAR is able to render five types of
geometric entities:

1. Spheres

2. Lines

3. Cylinders
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4. Triangular faces

5. Quadrilateral faces

A sample input file is given at the bottom of this page.

Spherical Entities

QUASAR renders spherical entities in the model using multi-faceted solids. Three dif-
ferent resolutions are available. The lower resolution, which is the default, is suitable for
very large models. Medium and high resolutions generate smoother spheres but require
more system resources and may take several seconds for each update. The resolution can
be set in the input file with an optional command line or changed interactively for each
list during execution via pop-up menu. The spheres are painted in light gray unless a
specific color is selected using the color command line. Sphere data is entered one line
per sphere. The first field is the sphere index followed by the three coordinates and the
radius. The sphere index does not have to be in sequence. Thus, if a subset of a longer
list is used, the original indeces can be used. If the user wants to scale the spheres after
the file has been created, this can be accomplished using the optional scale command
line.

npL LABL

[ color clr ]

[ resolution high / medium / low ]

[ scale s ]

numnp n

crd

i1 x1 y1 z1 r1

i2 x2 y2 z2 r2

. . .

in xn yn zn rn

eoL

}

The spheres can be painted colors continuously varying from blue to red to create fringe
plots of physical quantities. To exercise this option, the fringe command line must be
present before the sphere data is entered, as shown in the example below. The fringe
keyword is followed by the range for the scalar variable to be used for painting. For each
particle, the scalar variable follows the radius.

npL LABL

fringe fmin fmax

[ resolution (high, medium, low) ]

[ scale s ]

numnp n

crd
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i1 x1 y1 z1 r1 f1

i2 x2 y2 z2 r2 f2

. . .

in xn yn zn rn fn

eoL

Lines

Line lists are used for a variety of purposes. For example, they can be used to outline the
sharp edges of a solid part or the edges of shell parts. They also can be used to trace the
axis of beam elements for quick rendering, short segments perpendicular to triangular
or quadrilateral faces to indicate positive directions. Lines are typically painted with a
uniform solid color defined by the keyword color. The default color is black.

eeL LABL

[ color color ]

numpt n

crd

i1 x1 y1 z1

i2 x2 y2 z2

. . .

in xn yn zn

numee m

list

i1 j11 j12

i2 j21 j22

. . .

im jm1 jm2

eoL

It is also possible to paint lines with colors that vary continuously from blue to red to
create fringe plots of physical quantities. To exercise this option, the fringe command
line must be entered after the list block, as shown in the example below. The fringe

keyword is followed by the range for the scalar variable to be used for painting.

eeL LABL

[ color color ]

numpt n

crd

i1 x1 y1 z1

i2 x2 y2 z2

. . .

in xn yn zn

numee m

list

i1 j11 j12
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i2 j21 j22

. . .

im jm1 jm2

fringe fmin fmax

f11 f12

f21 f22

. . .

fm1 fm2

eoL

Cylinders

The reason for this type of list is for representing cylindrical surfaces of structural mem-
bers such as wires, cables, rebars etc. Figure 1 shows a section of a 7x7 twisted cable
consisting of 49 wires. The left picture shows a wireframe representation, while the right
picture shows a solid rendering of the wires using cylindrical surfaces. It is obvious why
the solid representation is superior. The format and amount of data in the plot files for
the two types of lists is essentially the same. The csL lists have two extra parameters:
radius and resolution.

csL LABL

[ front color ]

radius r

[ resolution low / medium / high ]

numpt n

crd

i1 x1 y1 z1

i2 x2 y2 z2

. . .

in xn yn zn

numcs m

list

i1 j11 j12

i2 j21 j22

. . .

im jm1 jm2

eoL

It is also possible to paint cylindrical setctions with colors that vary continuously from
blue to red to create fringe plots of physical quantities. To exercise this option, the fringe
command line must be entered after the list block, as shown in the example below. The
fringe keyword is followed by the range for the scalar variable to be used for painting.

csL LABL

numpt n

crd
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i1 x1 y1 z1

i2 x2 y2 z2

. . .

in xn yn zn

numcs m

list

i1 j11 j12

i2 j21 j22

. . .

im jm1 jm2

[ smooth ]

fringe fmin fmax

f11 f12

f21 f22

. . .

fm1 fm2

eoL

Triangular Faces

Triangular face lists are used for rendering surfaces consisting of triangular faces. These
may be generated from triangular shell meshes or external faces of tetrahedral meshes.

tfL LABL

[ front color ]

[ back color ]

numpt n

crd

i1 x1 y1 z1

i2 x2 y2 z2

. . .

in xn yn zn

numtf m

i1 j11 j12 j13

i2 j21 j22 j23

. . .

im jm1 jm2 jm3

eoL

Contour and fringe plots are possible

tfL LABL

numpt n

crd

i1 x1 y1 z1

i2 x2 y2 z2
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. . .

in xn yn zn

numtf m

i1 j11 j12 j13

i2 j21 j22 j23

. . .

im jm1 jm2 jm3

[ smooth ]

fringe fmin fmax

f11 f12 f13

f21 f22 f23

. . .

fm1 fm2 fm3

eoL

Quadrilateral Faces

Quadrilateral face lists are used for rendering surfaces consisting of quadrilateral faces.
These may be generated from quadrilateral shell meshes or external faces of hexahedral
meshes.

qfL LABL

[ front color ]

[ back color ]

numpt n

crd

i1 x1 y1 z1

i2 x2 y2 z2

. . .

in xn yn zn

numqf m

i1 j11 j12 j13 j14

i2 j21 j22 j23 j24

. . .

im jm1 jm2 jm3 jm4

eoL

Contour and fringe plots are possible

qfL LABL

numpt n

crd

i1 x1 y1 z1

i2 x2 y2 z2

. . .

in xn yn zn
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numqf m

i1 j11 j12 j13 j14

i2 j21 j22 j23 j24

. . .

im jm1 jm2 jm3 jm4

[ smooth ]

fringe fmin fmax

f11 f12 f13 f14

f21 f22 f23 f24

. . .

fm1 fm2 fm3 fm4

eoL

Example

In this complete listing of an acutal file, note that the first three lines are used for
reference information that can be printed when displaying the image. The words title,
steps, and time are keywords.

title DPM grid and associated tet mesh

nsteps 0

time 0.000000

tfL NAME

front lightgray

back null

numpt 995

crd

1 -1.200 0.000 6.800

2 -1.200 0.000 7.100

3 -1.200 0.000 7.400

4 -1.200 0.000 7.700

. . .

2548 1.200 6.000 7.800

2549 1.200 6.000 8.000

numtf 1988

list

1 1 151 147

2 148 1 147

3 2 7 1

. . .

1987 995 761 835

1988 761 995 850

eoL

eeL NAME

color black
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numpt 207

crd

1 -1.200 0.000 6.800

2 -1.200 0.000 7.100

. . .

2549 1.200 6.000 8.000

numee 218

list

1 2 1

2 1 6

. . .

217 205 206

218 206 207

eoL

npL GRID

color lightgray

numnp 1064

crd

1 0.506 2.563 7.720 0.200

2 -0.055 1.495 7.545 0.200

3 0.291 4.280 5.850 0.200

4 -0.827 1.526 7.474 0.200

. . .

1063 0.059 4.546 4.857 0.100

1064 -0.375 3.228 5.850 0.100

eoL

EOF

25.2 jHist: a java post-processor for Mars time history files

jHist is a rather simple java program for quickly displaying time histories generated by
Mars using the TimeHistoryList commands. jHist defaults the x-axis to the first record
in the time history file (which is typically the time in milliseconds) and the y-axis to the
second record. After the initial plot is displayed, the records for the x- and y-axis can
easily be changed to any other record in the file using the scroll-down menu options. It is
possible to display multiple curves simultaneously. At the moment, all curves are plotted
using a continuous thin solid black line.

25.2.1 Installation

jHist requires the Java Runtime Environment (JRE) to be installed on your computer.
You can quickly check if JRE is installed by typing:

$ which java
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If JRE is not installed, google ‘installing java’ and choose one of the www.java.com sites.
Installing JRE is free and simple.

The java class files for jHist are typically placed in a folder named $MARSPATH/jHist,
where MARSPATH is an environment variable that contains the path of the folder where
Mars files are located. The best way to incorporate jHist is to insert the defintion of
MARSPATH and an alias in your .bashrc file

export MARSPATH=/.../.../Mars # replace ... with actual path

alias jHist="java -cp $MARSPATH/jHist jHist"

For PC-cygwin users, it is important to type the correct path (the Windows path, rather
than the cygwin path), e.g.:

alias jHist="java -cp c:/cygwin/home/$USER/Mars/jHist jHist"

Note that a java program consists of a series of files with the .class extension. These
files are executed through the JRE and are OS independent. Thus, they can be installed
on any computer.

25.2.2 Execution

If the alias for jHist is properly set, then, the plots for file Hist.th can be executed
from the folder where the file is located using the command:

jHist Hist

We have not been able to execute jHist (and jCurv) over a ssh session, even when other
X11 applications could be executed. This would be a very desirable capability, since it
would eliminate the need to download history files from a supercomputer center to you
local computer. Unlike 3-D graphical applications that can be executed but are too slow
to be practical, jHist could be run very effectively from a remote server. If anybody can
figure out how to do this, please let’s us know, and we will make this feature available to
everybody else.

25.2.3 File format

Time history files have the following structure:

1: title line

2: number of records (n)

3.1: label for first record

3.2: label for second record

. . .

3.n: label for nth record

4.0: v_0,1 v_0,2 . . . v_0,n values at time v_0,1 (typically 0.)

4.1: v_1,1 v_1,2 . . . v_1,n values at time v_1,1

. . .

4.m: v_m,1 v_m,2 . . . v_m,n values at time v_m,1

The labels in section 3 of the input are used in the drop down menus for selecting the
records to be displayed.
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25.3 jCurv: a java program for making plots from various source
files

jCurv is a simple utility for creating plots of multiple curves from different source files.
jCurv is also written in Java. It is a batch program with the plot formatting commands
entered in an ASCII file. jCurv generates plot images that can be saved to png files for
incorporation in documents. Its execution is very simple. At the command line, enter

$ jCurv ‘filename’

where ‘filename’ is the name of the input file without the required extension .jcr. For
example, if the input filename is compare.jcr, the command would be jCurv compare.

jCurv creates a 3 in by 5 in plot and two actions are available. The Refresh button
makes it possible to refresh the plot when one or more of the source files are continuosly
updated during an ongoing simulation. The Make .png button makes it possible to save
the image to file image.png in the local folder. If you need to generate mulitple files, you
have to change the name to avoid overwriting previous images.

Installation is similar to jHist. You need to include an alias entry in the .bashrc

file, similarly to what was done for jHist. The jCurv classes are typicall installed in
the $MARSPATH/jCurv folder. Some examples are also included. They are named exam-
ple1.jcr, example2.jcr, etc.; the data sets used in the examples are named dataset1.th,
dataset2.th, etc.

25.3.1 Input file format

The format of the input file is discussed by explaining the commands contained in
example1.jcr (one of the examples included in the installation):

1: Title Example

2: XAxis lb "X-Axis" mn 0. dl 0.1 fm 0.0 L 4

3: YAxis lb "Y-Axis" mn -2. dl 2. fm 0.

4: Load DS1 mars dataset1.th

5: Band xr DS1 1 ybr DS1 2 ytr DS1 3 fill

6: Band xr DS1 1 ybr DS1 2 ytr DS1 3 cl black

7: Load DS2 seq dataset2.th

9: Curve xr DS2 1 yr DS2 3 cl green

8: Curve xr DS2 1 yr DS2 2 cl blue triangles

10: Load DS3 xy dataset3.th

11: Curve xr DS3 1 yr DS3 2 xs 0.1 cl red

12: EOF

Although the sequence of commands can be changed, the order may affect the final look
of the plot. Following is an explanation of the various lines.

Line 1: the title line is not used in the plot, but can be used as a comment line.
Line 2: the second line specifies the format of the x-axis using the following arguments:

lb Title of the x-axis; mn value of the first tic; dl increment for each tic; fm format for
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tic value, number of zeros after period corresponds to the number of decimal digits. The
default length of the x-axis is five inches, which major tick at one inch intervals.

Line 3: the second line specifies the format of the y-axis using the following arguments:
lb Title of the y-axis; mn value of the first tic; dl increment for each tic; fm format for
tic value, number of zeros after period corresponds to the number of decimal digits. The
default length of the x-axis is three inches, which major tick at one inch intervals. It is
possible to make the height two inches long using the L 2 command.

Line 4: The Load command is used to load a data set in memory. A data set consists
of a set of two or more records, represented as arrays of real numbers. The label DS1 is a
token to be used to identify the load set in following lines; mars is a keyword to identify
the format of the data-file; dataset1.th is the name of the data-file. Two additional file
formats are available: seq at line 7 and xy at line 11. Both formats are explained below.

Line 5: The Band command is used to depict an area limited by an upper and a lower
curve. Two types of bands are available: 1) a solid band where the area is filled with a
lightgray color, 2) a striped band consisting of vertical lines connecting lower and upper
curves at the given data points. The arguments of the command are: xr DS1 1 means
use record number 1 from the DS1 dataset for the x-axis value, ybr DS1 2 means use
record number 2 for the lower y value, ytr DS1 3 means use record number 3 for upper
y values, fill means paint the band using a solid color rather than vertical lines.

Line 6: This command is similar to the command in line 5, but represents the band
using vertical lines in black color.

Line 8: The Curve command is used draw lines or symbols to visualize time history
data or experimental data-points. The arguments of the command are: xr DS2 1 means
use record number 1 from the DS2 dataset for the x-axis; yr DS2 3 means use record
number 3 from the DS2 dataset for the y-axis; cl green means paint the line in green,
the following colors are available: black, blue, red, green, cyan, yellow, magenta, orange,
gray, and lightgray (the default color is black).

Line 11: In this line, the command xs 0.1 means that the x-coordinates are multiplied
(scale) by the 0.1 factor. Three other similar commands are available for both Band and
Curve commands: xo offset, ys scale, and yo offset. These are used to scale and
offset the original records using the equation:

new_value = scale*old_value + offset

Line 12: The EOF line terminates the input phase, any information after the EOF line is
ignored.

This is the sequence in which the various plot elements are displayed: first, the solid
bands, if any, are painted in light gray. Then, the x- and y-axis, and grid are painted in
various shades of gray or black. Then, the curves or symbols are painted, and finally the
vertical bands.

25.3.2 Data set file formats

jCurv accepts the file format of the time history files generated by Mars from the
TimeHistoryList’s. Furthermore, it accepts two other file formats. Data which may
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be available in ASCII format can be edited to satisfy one of the three formats using an
ASCII editor. If you have a specific format which you would like to be incorporated,
please make a request to ES3. All files formats are included in the examples.

Format of ‘xy’ files

x_1 y_1

x_2 y_2

. . .

x_n y_n

Format of ‘seq’ files

Title line // (string)

Title line // (string)

nRec // (int) number of Records

Record-1-label // (string)

npt // (int) number of value for record 1

value-1-1 // first value of record 1

value-1-2 // second value of record 1

. . .

value-1-npt // npt-th value of record 1

Record-2-label // (string)

npt // (int) number of value for record 2

value-2-1 // first value of record 2

value-2-2 // second value of record 2

. . .

value-2-npt // npt-th value of record 2

. . .

. . .

Record-nRec-label // (string)

npt // (int) number of value for record nRec

value-nRec-1 // first value of record nRec

value-nRec-2 // second value of record nRec

. . .

value-nRec-npt // npt-th value of record nRec
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